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Abstract 
 
 
Aim: This study was designed to investigate the role of several descriptive structure-activity 
features in the antifungal drug, amphotericin B and analyze them by artificial neural networks. 
Method: Artificial neural networks (ANN) based on the back-propagation algorithm were 
applied to a structure-activity relationship (SAR) study for 17 amphotericin B derivatives with 
antifungal and membrane directed activity. A series of modified ANN architectures was made 
and the best result provided the ANN model for prediction of antifungal activity using the 
structural and biologic property descriptors.  
Results: The best architecture, in terms of cycles of calculation was 12-15-2. Among the 
most important factors were biological descriptors that correlated best with the model 
produced by ANN. Among the chemical and structural descriptors, positive charge on Y 
substitution was found to be the most important, followed by lack of availability of free 
carboxyl and parachor. 
Conclusion: This model is found to be useful to elucidate the structural requirements for the 
antifungal activity and can be applied in the design and activity prediction of the new 
amphotericin B derivatives. 
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Introduction 

Amphotericin B (AmB) is a polyene discovered in 
1956 and produced by Streptomyces nodosus. 
This agent is the first effective compound 
available for systemic mycosis, used against 
serious mycotic infections. AmB is regarded by 
many as the drug of choice for the seriously ill 
patients, in spite of a number of major 
drawbacks. It is nephrotoxic, poorly tolerated, 
and has such low solubility in biological fluids 
that it has to be formulated as a colloidal 
suspension in bile salts and administered as a 
slow infusion (Sarba, 1990). In addition, to 
reduce the toxicity, lipid-based and liposomal 
formulations of AmB have been either marketed 
or are undergoing further studies (Hiemenz, et 
al., 1996; Wasan, et al., 1997). Nevertheless, 
AmB is still claimed by many to be the best 
standard, against which other agents should be 
compared. It has a broad spectrum of activity 
and is fungicidal against most species, at least in 
vitro. The newer azole antifungals have still not 
replaced it for many indications, particularly in 
the immunocompromised hosts.  

The polyenes exert their effect by associating 
with the eukaryotic membrane sterols and 
disrupting membrane integrity, as can be shown 
by a rapid efflux of potassium ions from treated 
cells (Hunter, 1995). It is believed that AmB 
inserts into membrane by having a high affinity 
for ergosterol in the fungal membrane. This 
affinity is lower for cholesterol, therefore, AmB 
shows a greater effect on fungi in low 
concentration than on host cells.  
 
A better understanding of the structural features 
can lead to making derivatives with higher 
affinity to ergosterol and increased fungitoxicity 
compared to mammalian cell. Adverse effects 
would be important in rational design of new 
compounds with improved profile. A number of 
substituted amphotericin B molecule have been 
synthesized and their activity studied by principle 
component analysis methodology (Cheron, et 
al., 1988).  The QSAR of amphotericin B and its 
16 semi-synthetic derivatives (Table 1), obtained 
by modification at carboxyl and amino groups, 

were lead to certain assumptions on the role of 
net molecular charge on the results of biological 
tests (antibiotic action, erythrocyte K+ release, 
haemolysis) by numerical methods (Cheron, et 
al., 1988).   
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Figure 1. General structure of amphotericin B 
derivatives studied. 
 number of computational methods have been 
und useful in the area of structure-activity 
lationship (SAR) and structure-property 
lationship (SPR) (Hansch, et al., 1995, 2001; 
ize, et al, 1995; Estrada, et al., 2001; 
anggard, et al., 2000). In this study, we report 
e application of neural network methodology to 
rrelate SAR data and find new correlations 

etween the biological and physicochemical 
escriptor values such as parachor, lipophilicity, 
MILES, log P and the membrane activity for 
mphotericin B and its derivatives. The following 
 the list of such descriptors:  
S. cerevisiae YK50, the dosage that led to 50% 

potassium release from yeast cells 
compared to 100% value for the boiled cell 
suspension; 

Log P, logarithm of n-octanol/water partition 
coefficient;  

Erythrocyte H50, the dosage that led to 50% 
haemolysis; 

Erythrocyte EK50, the dosage that led to 50% 
potassium release from erythrocytes 
compared to 100% value for the lysed cells; 

Positive charge on Y functionality at pH= 7.4;  
Negative charge on X functionality at pH= 7.4; 
Positive charge on X functionality at pH= 7.4; 
Lack of free –COO; 
Ergosterol 410 UV band position in the 
presence of the compound tested; 
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Table 1. The neural network architecture produced with the descriptors for AmB derivatives with the error 
limit of <0.05 

 
IC50 (µg/ml) IC50 

(µg/ml) 
Compound  X Y 

S. cerevisiae C. 
lbi1 (AmB) COOH NH2 0.05 0.03 

2 COOCH3 NH2 0.07 0.05 
3 CONH(CH2)3N(CH3)2 NH2 0.08 0.04 
4 COOH NHCOCH3 0.35 0.28 
5 COOCH3 NHCOCH3 0.55 0.25 
6 CONH(CH2)3N(CH3)2 NHCOCH3 0.25 0.3 
7 COOCH3 NHCOCH2NH2 0.07 0.06 
8 COOH NHCOCH2NH(CH3)2 0.08 0.08 
9 COOCH3 NHCOCH2NH(CH3)2 0.12 0.1 
10 CONH(CH2)3N(CH3)2 NHCOCH2NH(CH3)2 0.13 0.12 
11 COOCH3 NHCO(CH2)2NH(CH3)2 0.1 0.12 
12 COOH NH-(CHCO)(CH2CO)-NC2H5 0.2 0.1 
13 COOCH3 NH-(CHCO)(CH2CO)-NC2H5 1 1 
14 CONH(CH2)3N(CH3)2 NH-[(CHCO)(CH2CO)]-NC2H5 0.2 0.2 
15 COOH NH-CH2-[C(OH)OCH2(CH(OH))3] 0.05 0.06 
16 COOH +N(CH3)3 0.08 0.06 
17 COOCH3

+N(CH3)3 0.07 0.06 

10- Cholesterol 410 UV band position in the 
presence of the compound tested; 

11- SMILES code, Simplified Molecular Input Line 
Entry System, a chemical notation system 
based on the principles of molecular graph 
theory; 

12- Parachor, an additive physical property of a 
substance related 9to its molar volume, 
determined by the kind, number of atoms 
and their manner of arrangement. 

 
An artificial neural network  (ANN) is a 
biologically inspired algorithm designed to 
simulate the way in which the human brain 
processes information. ANN, are composed of 
many processing elements (PE). Each 
processing element has inputs, transfer 
functions and output. Processing elements are 
connected with coefficients and are arranged in 
layers, i.e., input layer, output layer and hidden 
layers in between (Sardari, and Sardari 2002). 
Application of ANN in pharmaceutical research is 
a new field with novel potentials to be 
discovered. A variety of areas have been 
described to benefit from such algorithm 
predictions that range from industrial design 
systems to optimal formulation prediction and 

SAR evaluations (Rowe, et al., 1998; 
Agatonovic-Kustrin, et al., 2000). Here, the 
design and application of ANN for antifungal 
drug AmB and its synthetic derivatives is 
reported.  
 
A set of 17 structurally related AmB derivatives 
was selected and their experimentally derived 
membrane activity on erythrocyte cells and 
antifungal values against Candida albicans and 
Sacharomyces cerevisiae were collected 
(Cheron, et al., 1988). A standard feed-forward 
network, with back propagation rule and with 
single hidden layer architecture was chosen 
applying the EasyNN, 8.01 (1999-2001). The 
number of neurons was kept minimum to avert 
an over-fitting problem, which is usually 
produced by more weights due to higher 
numbers of neurons in input and hidden layers. 
However, to produce the optimum architecture, 
powerful enough to model the functions and not 
create errors more than 0.05%, the number of 
hidden layer neurons were varied from 1-48. The 
following architectures were produced that met 
the error limit condition using least number of 
calculation cycles (Table 2).  Higher numbers of 
hidden layer did not improve the performance, 
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yet can decrease the speed of calculation. This 
finding is in accordance with previous reports 
(Ripley, et al., 1996). The descriptor parameters, 
including Log P and parachor, and SMILES 

coding were calculated using the Toolkit for 
Estimating the Physicochemical Properties of 
Organic Compounds, v. 1.0, John Wiley & Sons, 
Inc.  
The best architecture, in terms of cycles of 
calculation was 12-15-2. The importance is 
relative to the greatest sum of absolute weights 
connected to the next layer of the architecture. 
Therefore, importance of an input descriptor is 
determined by the sum of the absolute values of 
the weights of all the outgoing architecture 
connections from the input node to the next 
layer. Among the most important factors were 
biological descriptors 1, 3, and 4, that correlated 

best with the model produced by ANN. Among 
the chemical and structural descriptors, positive 
charge on Y substitution was found to be the 
most important, followed by lack of availability of 

free carboxyl and parachor. The least important 
chemical and structural descriptors are 2, 7, and 
11. The correlation coefficients between the 
experimental and the predicted IC50 value 
pertaining to all the compounds for S. cerevisiae 
and C. albicans obtained by ANN methodology 
are 0.94 and 0.82 respectively. This indicates 
the applicability of this method in prediction 
studies. Compounds 4, 5, 6, and 13 
corresponded to the highest error that was 
generated during the training cycles. The least 
error values were attributable to compounds 2 
and 16. 

 
Table 2. The neural network architecture produced with the descriptors for AmB derivatives with the error limit of 
<0.05. 

Relative normalized network 
error for compounds 

Architecture Cycles Average 
Error 

Lowest Highest 

Order of importance of 
Molecular/Biological Descriptor  

12-1-2 57 0.047 9 5, 13, 4, 6, 1 1, 4, 3, 7, 5, 9, 10, 6, 8, 11, 2, 12 
12-2-2 14 0.049 8 13, 6, 5, 4 1, 4, 3, 5, 8, 9, 6, 7, 10, 11, 2, 12 
12-3-2 15 0.049 2 13, 5, 6, 4 1, 4, 3, 5, 8, 7, 6, 10, 9, 2, 11, 12 
12-4-2 11 0.048 16 13, 5, 4, 6 1, 4, 3, 5, 8, 12, 6, 9, 11, 7, 10, 2 
12-5-2 12 0.049 16 13, 5, 4, 6 1, 4, 3, 5, 12, 7, 8, 10, 9, 2, 6, 11 
12-6-2 10 0.049 16 13, 5, 6, 4 1, 3, 4, 5, 12, 9, 8, 10, 2, 6, 7, 11 
12-7-2 10 0.048 2 13, 6, 4, 5 1, 3, 4, 9, 5, 8, 6, 12, 11, 7, 10, 2 
12-8-2 9 0.048 2 13, 4, 6, 5 1, 4, 3, 5, 12, 8, 9, 2, 6, 7, 10, 11 
12-9-2 9 0.048 16 13, 4, 6, 5 1, 3, 4, 12, 5, 8, 2, 11, 10, 9, 6, 7 
12-10-2 8 0.048 2 13, 4, 6, 5, 14 1, 4, 3, 5, 8, 2, 12, 9, 11, 6, 10, 7 
12-11-2 8 0.047 16 13, 4, 6, 5 1, 3, 4, 12, 9, 8, 5, 11, 6, 10, 7, 2 
12-12-2 7 0.048 16 13, 4, 6, 5 1, 3, 4, 5, 8, 12, 9, 6, 7, 11, 10, 2 
12-13-2 8 0.049 16 13, 4, 6, 5 1, 3, 4, 5, 12, 8, 9, 11, 10, 6, 2, 7 
12-14-2 9 0.049 16 13, 4, 6, 5 1, 3, 4, 12, 5, 8, 10, 11, 9, 2, 7, 6 
12-15-2 6 0.049 16 13, 4, 6 1, 3, 5, 4, 12, 8, 9, 11, 6, 10, 2, 7 
12-24-2 7 0.047 16 13, 4, 6 1,3, 4, 12, 8, 10, 9, 11, 5, 2, 6, 7 
12-48-2 18 0.047 2 13, 4, 6, 17 1, 4, 3, 5, 10, 11, 12, 9, 8, 6, 2, 7 
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The results of this study show the ability of ANN 
algorithm in assigning the biological and 
physicochemical descriptors to the activity 
prediction of large antibiotic molecules such as 
AmB. The findings of this study reveals the 
significance of various factors participating in the 
desired antifungal activity; therefore such 
method can be applied in drug design and 
development of different derivatives with better 
profile of activity, less toxicity and more potency. 
In this regard, the produced architectures using 
ANN modeling can be applied to in silico study of 
the biological activity for new derivatives prior to 
synthetic steps.    
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