Tropical Journal of Pharmaceutical Research, April 2009; 8 (2): 181-186 © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.

c c

Review Article

Available online at http://www.tjpr.org

Nebivolol might be Beneficial in Osteoporosis Treatment: A Hypothesis

Aysun Toker¹, Erim Gulcan², Serdar Toker³, Enver Erbilen⁴, Elif Aksakalli⁵ ¹Department of Biochemistry and Clinical Biochemistry, Yoncali Physical Therapy and Hydrotheraphy Hospital, ²Department of Internal Medicine, ³Department of Orthopaedics and Traumatology, ⁴Department of Cardiology, ⁵Department of Physical Therapy and Rehabilitation, Dumlupinar University Faculty of Medicine, Kutahya, Turkey

Abstract

Nebivolol is a β -blocker that is highly selective for β 1-adrenergic receptors with vasodilating properties. This property can be attributed to an endothelial release of nitric oxide (NO). It has been reported that nebivolol also reduces intracellular oxidative stress. There are some studies conducted in humans and animal models which have shown that NO is an important regulator of bone metabolism. However, oxidative stress and antioxidant systems may play important roles in the pathogenesis of osteoporosis. In this paper, we hypothesized that nebivolol may have beneficial effects via nitric oxide and antioxidant action in osteoporosis treatment.

Key Words: Osteoporosis treatment, Nebivolol, Nitric oxide, Anti-oxidant action

Received: 20 September 2008

Revised accepted: 22 November 2008

^{*}Corresponding author: E -mail: drerimgulcan@gmail.com

Introduction

There is a balance in the activities of various types of bone cells that is carefully coordinated by several hormones and cvtokines termed 'bone remodelina'. Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to increased bone fragility and may result in an increased risk of fracture¹.

Postmenopausal osteoporosis has been Albright² described by Fuller as the consequence of impaired bone formation due to oestrogen deficiency. Oestrogen induces endothelial nitric oxide (NO) production³, and the protective effect of estrogen in bone may be mediated in this way. NO stimulates osteoblast proliferation⁴. There are several drugs that are used for osteoporosis treatment. We think that nebivolol may be a choice in osteoporosis treatment by acting via NO.

Mechanism of Action of Nebivolol and Nitric Oxide

Beta-blockers are one of the drugs of choice for the treatment of hypertension¹, and have been commercially available for nearly fifty years. Recently, several beta-blockers with different mechanisms of action and antihypertensive efficacy have come into use. Beta-blocker mechanisms are very interesting. Reta-blockers are used for hypertension treatment and the basis is the inhibition of renin by beta-blockers, especially at high doses, in the juxtaglomerular apparatus. They also have some central effects because of central inhibition of the sympathetic nervous system³.

In hypertensive efficacy, beta1-selective agents may be more effective than nonselective beta-blockers. These include some among the third generation betablockers such as labetolol, carvedilol, bucindolol, and nebivolol. Currently, nebivolol is the newest of the beta-blockers with long acting properties; it is also a highly cardioselective beta1-blocker and is different from earlier drugs in the same family. Nebivolol consists of a 1:1 racemic mixture of d- and I-enantiomers, of which Dnebivolol is a highly selective beta1-receptor antagonist. D-nebivolol shows an over 100fold greater affinity for β1-adrenoreceptors than I-enantiomer⁴. The vasorelaxant action of nebivolol is mediated by not only its main pharmacodynamic property as an adrenergic receptor antagonist, but also through the stimulation of nitric oxide (NO) release from vascular endothelium^{5,6}. In particular, the Iform possesses an endothelium-dependent vasorelaxant effect'. However.some studies indicate that nebivolol is able to induce a remarkable production of NO in vessels via the dextro-rotatory isomer. NO production is realized through the activation of the endothelial nitric oxide synthase via calcium mobilization⁸.

In addition nebivolol has been shown to cause endothelium-dependent vasodilation associated with activation of the L-arginine/nitric oxide (NO) pathway in both hypertensive and normotensive subjects^{9,10}. Although the molecular mechanisms that could explain this proposed action of nebivolol on NO release have not been clarified, NO release can be different intracellular induced by two mechanisms. These mechanisms consist of the enzyme endothelial nitric oxide synthase (eNOS) either by its interaction with the Ca2calmodulin complex¹¹, or by its calciumindependent phosphorylation¹².

The endothelial effect of nebivolol may result from the activation of different receptors such adrenoreceptors^{9,13-15} β-3 as β-2 and oestrogen receptors of plasma membrane¹⁶, receptors¹⁷ 5-hydroxytryptamine 1A as commonly found for other ß blockers, and P2Y purinoceptor⁶. In various studies, it has been shown that nebivolol causes vasodilation through endothelial B2 adrenergic receptormediated NO production and/or ATP efflux P2Ywith consequent stimulation of release6,9 purinoceptor-mediated NO nebivolol inhibits NO synthase uncoupling¹⁸.

However, its vasodilating effect depends on soluble guanylyl cyclase inhibitors^{19,20}.

Besides the vasodilating effect of nebivolol, it has antioxidant activity and its mechanism is due to direct reduction of reactive oxygen species (ROS) that is produced by Nicotinamide adenine dinucleotide phosphate NADPH oxidase system²¹. Moreover, it was reported that nebivolol decreases systemic oxidative stress in young healthy volunteers²².

Nebivolol is a lipophilic agent and is metabolized in the liver. It is transformed into several active metabolites, essentially via the cytochrome P450 2D6 (CYP2D), an isoform of cytochrome P450 characterized by genetic polymorphism²³. It was suggested that only some hepatic metabolites, not the parent drug, is reponsible for NO production by activating β2-adrenergic receptors". Epidemiological studies have indicated a higher prevalence of cardiovascular risk factors among African-Americans. In order to understand the basis for this difference, low bioavailability of NO from the endothelium of African-Americans was reported despite much higher levels of endothelium-dependent NO synthase (eNOS)²⁴. The observed higher prevalence of cardiovascular risk factors and their complications among African-Americans may be explained by this polymorphism.

Nebivolol is able to induce a significant increase in NO which is the main endogenous mediator of vasorelaxation in conductance (aorta) and in resistance (mesenteric) arteries⁸, renal artery¹³, rats, bovine aorta and 11 19 25 arteries 11,19,25 small mesenteric canine coronary, carotid artery²⁶ and murine corpus cavernosum²⁷. Some studies had shown that causes NO-dependent nebivolol vasodilation^{5,6,9,11,12}. Moreover, Maffei et al have directly observed nebivolol-induced NO production through a NO-specific visualization technique⁸. It was demonstrated that nebivolol activity exerts an agonist on β3 adrenoreceptors to induce sustained NO production through increases in cytosolic calcium concentrations and dephosphorylation of threonine 495 endothelial NO synthase (Thr495-eNOS)¹⁴. The novel β-blocker nebivolol has been shown to increase synthesis and release of endotheliumdependent NO which plays an important role in the regulation of vascular structure, tone, and function, and endothelial dysfunction which plays an important role in the pathogenesis of hypertension and cardio vascular disease (CVD).

Nitric oxide and Osteoporosis

Nitric oxide (NO), a type of short-lived signaling molecule, plays important roles in several biological processes including bone cell functions. The production of NO from L-arginine is catalyzed by nitric oxide synthase (NOS) that has three isoforms: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS)²⁸.

Postmenopausal osteoporosis has been described as the consequence of impaired bone formation due to oestrogen deficiency. oestrogen seems to be important in the stimulation of osteoblast proliferation and differentiation via the NO and NOS pathway^{29,30,31}. Although, some studies reported that NO is an important regulator of bone metabolism³²⁻³⁵, the results of these studies controversial. The are studies conducted on the effect of NO on bone cell functions showed that bone cells produce NO in response to various stimuli including oestrogens, pro-inflammatory cytokines, and mechanical stress³³⁻³⁷ and in this regard, different types of NOS play a role. endothelial NO synthase (ENOS) is the major nitric oxide synthase enzyme expressed in bone by osteoblasts, osteoclasts, and osteocytes, and expressed with estrogen-related receptor alpha (ERR α) in all these bone cells³⁶. However, it was suggested that ERRa upregulates endothelial nitric oxide synthase (eNOS) mRNA and protein expression in bovine pulmonary artery endothelial cells via a DNA site³⁸.

NO release in osteoblastic cells increases cyclic guanosine monophosphate (cGMP) formation and cGMP signal regulates osteoblastic proliferation and differentiation³⁹. Pan et al. showed that phytooestrogen, aenistein. stimulates osteoblastic differentiation via NO/cGMP in primary mouse bone marrow-derived mesenchymal stem cell cultures⁴⁰. Resveratrol is a naturally occurring polyphenol that possess estrogenic activity, suggesting that it may possess similar functions as oestrodiol (E2) on NO synthesis and osteoblastic metabolism²⁹. Some studies suggested that treatment for 24 hours with E2 causes increased eNOS expression^{41,42}.

In vitro, NO is produced by osteoblasts and stimulates their proliferation⁴¹. NO has biphasic effects on bone resorption. Although, low levels of NO production may be essential for normal osteoclast function and maturation, cvtokine-induced NO has been found to inhibit proliferation of osteoblasts⁴³. It was reported that nitroglycerin ointment was as effective as estrogen in preventing bone loss in women oophorectomy-induced menopause⁴⁴, with and taking nitrates increased hip bone mineral women⁴⁵. (BMD) in Moreover. density ovariectomy-induced osteopaenia can be reversed by NO donor nitroglycerin in rats^{46,47} Corticosteroid-induced bone loss was also prevented by NO donor nitroglycerin in male rats⁴⁸.

NO inhibits the osteoclasts, thus greatly increasing bone deposition. Vitamin K and magnesium (Mg) also have similar effects⁴⁹. It is fact that oral administration of L-arginine in pharmacological doses stimulates growth hormone and insulin-like growth factor-I increases responses, and nitric oxide synthesis. Since nitric oxide is a potent inhibitor of osteoclastic bone resorption, Larginine could increase bone mass. Therefore, it is hypothesized that oral supplementation of L-arginine may be a new strategy in the prevention and treatment of osteoporosis⁵⁰.

Conclusion

Previous studies have reported that oxidative stress and antioxidant systems play important roles in the development of osteoporosis^{51,52}. We also know about the role of NO in the pathogenesis of osteoporosis. Nebivolol is able to induce a significant increase in NO which is the main endogenous mediator of vasorelaxation in various tissues. Furthermore, NO may have beneficial effects on osteoporosis. In the light of the available information, we hypothesized that nebivolol may be benefical via nitric oxide in osteoporosis treatment. However clinical studies and investigations are required to confirm this.

References

- 1. Clinical Synthesis Panel on HRT. Hormone replacement therapy. Lancet 1999; 354:152– 155.
- Forbes AP. Fuller Albright. His concept of postmenopausal osteoporosis and what came of it. Clin Orthop Relat Res. 1991 Aug;(269):128-41
- Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW.. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide snthase by estrogen. J Clin Invest 1999;103: 401-406.
- Riancho JA, Zarrabeitia MT, Fernandez Luna JL, Gonzalez Macias J Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 1995, 107: 87–92
- Chobanian, AV, Bakris GL, Black HR. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Hypertension 2003; 42:1206– 1252.
- 6. Weber MA. The role of the new beta-blockers in treating cardiovascular disease. Am J Hypertens 2005;18(12 pt 2):169-176.
- Pauwels PJ, Van Gompel P, Leysen JE. Human B1and B2-adrenergic receptor binding and mediated accumulation of cAMP in transfected chinese hamster ovary cells. Profile of nebivolol and known β-adrenergic blockers. Biochem Pharmacol 1991; 42:1683–1689.
- Cockcroft JR, Chowienczyk PJ, Brett SE, Chen CP, Dupont AG, Van Nueten L, Wooding SJ, Ritter JM. Nebivolol vasodilates human forearm vasculature: evidence for an L-arginine/NOdependent mechanism. J Pharmacol Exp Ther 1995; 274:1067–1071.

Toker et al

- 9. Kalinowski L, Dobrucki LW, Szczepanska-Konkel M, Jankowski M, Martyniec L, Angielski S, Malinski T. Third-generation b-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: a novel mechanism for antihypertensive action. Circulation. 2003;107: 2747-2752.
- 10. Mason PR, Kubant R, Jacob RF, Walter MF, Boychuk B, Malinski T. Effect of nebivolol on endothelial nitric oxide and peroxynitrite release in hypertensive animals: role of antioxidant activity. J Cardiovasc Pharmacol 2006; 48: 862-869.
- 11. Maffei A, Vecchione C, Aretini A, Poulet R, Bettarini Gentile MT, Cifelli G, Lembo G. В. Characterization of Nitric Oxide Release by Nebivolol and Its Metabolites. Am J Hypertens. 2006;19: 579-586.
- 12. Broeders MA, Doevendans PA, Bekkers BC, Bronsaer R, van Gorsel E, Heemskerk JW, Egbrink MG, van Breda E, Reneman RS, van Der Zee R. Nebivolol: a third-generation betablocker that augments vascular nitric oxide endothelial beta(2)-adrenergic release: receptor-mediated nitric oxide production. Circulation. 2000;102: 677-684.
- 13. Tzemos N, Lim PO, MacDonald TM. Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation. 2001;104: 511-514.
- 14. Parenti A, Filippi S, Amerini S, Granger HJ, Fazzini A, Ledda F. Inositol phosphate metabolism and nitric-oxide synthase activity in endothelial cells are involved in the vasorelaxant activity of nebivolol. J Pharmacol Exp Ther 2000; 292: 698 -703.
- 15. Gosgnach W, Boixel C, Nevo N, Poiraud T, Michel JB. Nebivolol induces calcium independent signaling in endothelial cells by a possible betaadrenergic pathway. J Cardiovasc Pharmacol 2001; 38:191-199.
- 16. Georgescu A, Pluteanu F, Flonta ML, Badila E, Dorobantu M, Popov D. The cellular mechanisms involved in the vasodilator effect of nebivolol on the renal artery. Eur J Pharmacol 2005; 508:159-166.
- 17. Dessy C, Saliez J, Ghisdal P, Daneau G, Lobysheva II, Frérart F, Belge C, Jnaoui K, Noirhomme P, Feron O, Balligand JL.. Endothelial B3adrenoceptors mediate the nitric oxideof dependent vasorelaxation coronary microvessels in response to the thirdgeneration beta-blocker, nebivolol. Circulation 2005;112:1198-1205.
- 18. Rozec B, Quang TT, Noireaud J, Gautheir C. Mixed B 3-adrenoceptor agonist and B 1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol 2006;147: 699-706.
- 19. Garban HJ, Buga GM, Ignarro LJ. Estrogen receptormediated vascular responsiveness to nebivolol: a novel endothelium-related mechanism of

therapeutic vasorelaxation. .1 Cardiovasc

- Pharmacol 2004; 43: 638–644. 20. Kakoki M, Hirata Y, Hayakawa H, Nishimatsu H, Suzuki Y, Nagata D, Suzuki E, Kikuchi K, Nagano T, Omata M. Effects of vasodilatatory B -adrenoceptor antagonists on endotheliumderived nitric oxide release in rat kidney. Hypertension 1999; 33: 467-471.
- 21. Mollnau H, Schulz E, Daiber A, Baldus S, Oelze M, August M, Wendt M, Walter U, Geiger C, Agrawal R, Kleschyov AL, Meinertz T, Münzel T. Nebivolol prevents vascular NOS III uncoupling in experimental hyperlipidemia and inhibits NADPH oxidase activity in inflammatory cells. Arterioscler Thromb Vasc Biol 2003; 23: 615-621.
- 22. Cosentino F, Bonetti S, Rehorik R, Eto M, Werner-Felmayer G, Volpe M, Lüscher TF. Nitricoxidemediated relaxations in salt-induced hypertension: effect of chronic B1- selective receptor blockade. J Hypertens 2002; 20: 421-428
- 23. Ignarro LJ, Byrns RE, Trinh K, Sisodia M, Buga GM. Nebivolol: a selective ß 1- adrenergic receptor antagonist that relaxes vascular smooth muscle by nitric oxide and cyclic GMP-dependent mechanisms. Nitric Oxide 2002; 7: 75-82.
- 24. Cominacini L, Fratta Pasini A, Garbin U, Nava C, Davoli A, Criscuoli M, Crea A, Sawamura T, Lo Cascio V. Nebivolol and its 4-keto derivative increase nitric oxide in endothelial cells by reducing its oxidative inactivation. J Am Coll Cardiol 2003; 42:1838-1844.
- 25. Troost R, Schwedhelm E, Rojczyk S, Tsikas D, Frolich JC. Nebivolol decreases systemic oxidative stress in healthy volunteers. Br J Clin Pharmacol 2000; 50: 377-379.
- 26. Scheen AJ. Pharma-clinics medication of the month, Nebivolol (Nobiten). Rev Med Liege 2001; 56: 788–791.
- 27. Kalinowski L, Dobrucki I, Malinski T. Race-specific endothelial differences in function: predisposition of African Americans to vascular diseases. Circulation 2004; 109: 2511-2517.
- 28. De Groot AA, Mathy MJ, van Zwieten PA, Peters SL. Involvement of the B 3 adrenoreceptor in nebivolol-induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol 2003: 42: 232-236.
- 29. Ritter JM. Nebivolol: endothelium-mediated vasodilating effect. J Cardiovasc Pharmacol 2001; 38(suppl 3): S13-16.
- 30. Reidenbach C, Schwinger RH, Steinritz D, Kehe K, Thiermann H, Klotz T, Sommer F, Bloch W, Brixius K.Nebivolol induces eNOS activation and NO-liberation in murine corpus cavernosum. Life Sciences 2007; 80: 2421-2427.
- 31. Akyol O, Zoroglu SS, Armutcu F, Sahin S, Gurel A. Nitric oxide as a physiopathological factor in neuropsychiatric disorders. In Vivo 2004; 18: 377-390.

Trop J Pharm Res, April 2009; 8 (2):185

Toker et al

- O'Shaughnessy MC, Polak JM, Afzal F, Hukkanen MV, Huang P, MacIntyre I, Buttery LD. Nitric oxide mediates 17bestradiol- stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 2000; 277: 604–610.
- Samuels A, Perry MJ, Gibson RL, Colley S, Tobias JH. Role of endothelial nitric oxide synthase in estrogen induced osteogenesis. Bone 2001; 29: 24–29.
- 34. Armour KE, Armour KJ, Gallagher ME, Godecke A, Helfrich MH, Reid DM, Ralston SH. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 2001; 142: 760–766.
- 35. van't Hof RJ, Armour KJ, Smith LM, Armour KE, Wei XQ, Liew FY, Ralston SH. Requirement of the inducible nitric oxide synthase pathway for IL-1induced osteoclastic bone resorption. Proc Natl Acad Sci USA 2000;97:7993-8.
- 36. van't Hof RJ, Macphee J, Libouban H, Helfrich MH, Ralston SH. Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 2004; 145: 5068-5074.
- 37. Armour KE, Van'T Hof RJ, Grabowski PS, Reid DM, Ralston SH. Evidence for a
- pathogenic role of nitric oxide in inflammation induced osteoporosis. J Bone Miner Res 1999; 14: 2137-2142.
- Hao YJ, Tang Y, Chen FB, Pei FX. Different doses of nitric oxide donor prevent osteoporosis in ovariectomized rats. Clin Orthop 2005; 435: 226-231.
- 39. van't Hof RJ, Ralston SH. Nitric oxide and bone. Immunology 2001; 03: 255–261.
- 40. Caballero-Alias AM, Loveridge N, Lyon A, Das-Gupta V, Pitsillides A, Reeve J. NOS isoforms in adult human osteocytes: multiple pathways of NO regulation? Calcif Tissue Int 2004; 75: 78–84.
- 41. Sumi D, Ignarro LJ. Estrogen-related receptor â1 upregulates endothelial nitric oxide synthase expression. Proc Natl Acad Sci USA 2003; 100: 14451–14456.
- 42. Mancini L, Bidhendi NM, Becherini L, Martineti V, MacIntyre I. The biphasic effects of nitric oxide

in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 2000; 274: 477–481.

- 43. Pan W, Quarles LD, Song LH, Yu YH, Jiao C, Tang HB, Jiang CH, Deng HW, Li YJ, Zhou HH, Xiao ZS. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. J Cell Biochem 2005; 94 (2): 307–316.
- Riancho JA, Zarrabeitia MT, Fernandez Luna JL, Gonzalez Macias J. Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 1995; 107: 87–92.
- Chambliss KL, Shaul PW. Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev 2002; 23: 665–686.
- 46. Clancy MR, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity. Arthritis Rheum 1998; 41: 1141–1151.
- Wimalawansa SJ. Nitroglycerin therapy is as efficacious as Standard estrogen replacement therapy (premarin) in prevention of oophorectomy- induced bone loss: a human pilot clinical study. J Bone Miner Res 2000; 15: 2240–2244.
- Jamal SA, Browner WS, Bauer DC, Cummings SR. Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J Bone Miner Res 1998; 13: 1755– 759.
- Wimalawansa SJ. Restoration of ovariectomy-induced osteopenia by nitroglycerine. Calcif Tissue Int 2000; 66: 56–60.
- Wimalawansa SJ, De Marco G, Gangula P, Yallampalli C. Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone 1996; 18: 301–304.
- 51. Wimalawansa SJ, Chapa MT, Yallampalli C, Zhang R, Simmons DJ. Prevention of corticosteroidindcued bone loss with nitric oxide donor nitroglycerin in male rats. Bone 1997; 21: 275– 280.
- 52. Zofkova I, Kanceva RL. New drugs with positive effects on bones. Cas Lek Cesk 1997; 136 (15): 459–463.