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Abstract 
 
 

Purpose: Lobeline perturbs intra- and extracellular neurotransmitter levels and diminishes the in vitro 
and in vivo effects of psychostimulants.  More recently, lobeline was shown to bind to µ opiate 
receptors, block the effects of opiate receptor agonists, and decrease heroin self-administration in rats.  
The present study determined the effect of lobeline on morphine-induced changes in locomotor behavior 
in rats. 
Methods: For 12 consecutive days (Days 1 - 12), male rats were administered lobeline (0.3 or 1 mg/kg) 
followed by morphine (5 or 10 mg/kg) and locomotor activity was measured.  On Day 13, the effect of 
lobeline on the expression of morphine-induced increases in activity was determined.  
Results: With repeated morphine treatment, an increase in locomotor activity was observed.  In a dose-
dependent manner, lobeline decreased the morphine-induced increase in activity.  Acute lobeline 
challenge on Day 13 also attenuated the expression of this morphine-induced increase in activity.   
Conclusion: These results are consistent with previous work where lobeline blocks the locomotor-
activtating properties of psychostimulants, and these findings support an emerging literature suggesting 
that lobeline produces its behavioral effects through an interaction with µ opiate receptors. 
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INTRODUCTION 
 
Lobeline is an alkaloid that is found in Lobelia 
inflata, a herbaceous plant that grows 
throughout the eastern and southern United 
States.  It has long been used in a variety of 
medicinal preparations, including programs 
aimed at tobacco smoking cessation [1,2].  
Lobeline and its analogs are currently being 
investigated as a treatment for methamphe-
tamine addiction [3].  Historically, lobeline has 
been characterized as a cholinergic ligand as 
it binds to nicotinic acetylcholine receptors 
with relatively high (Ki value ≈ 0.005 – 0.04 
µM) affinity [4-6].  However, lobeline also 
binds to (Ki value ≈ 0.7 – 50 µM) and inhibits 
the activity of the vesicular monoamine 
transporter (VMAT2) and the plasmalemmel 
dopamine transporter (DAT) [7,8].   
 
Several preclinical studies have shown that 
lobeline reduces or blocks the in vitro and in 
vivo effects of abused psychostimulants [9-
14].  In rat striatum, lobeline attenuated d-
amphetamine- and nicotine-evoked dopa-
mine release [12,13] and diminished 
methamphetamine-induced changes in 
dopamine storage [9]   In behavioral studies, 
lobeline attenuates psychostimulant-induced 
activation in several rodent models of drug 
addiction (e.g., locomotor activity, drug 
discrimination and self-administration) 
[10,11,13,14].  For example, lobeline (0.3 – 3 
mg/kg) decreased methamphetamine self-
administration [10].  In locomotor activity 
studies in rats, lobeline (0.3 – 3 mg/kg) 
attenuated cocaine- and nicotine induced 
hyperactivity after acute and repeated (12 
days) stimulant treatment [11,14]. 
 
Recently, our laboratory demonstrated that 
lobeline diminishes the effects of µ opiate 
receptor agonists, possibly via an interaction 
with µ opiate receptors in brain [15].   In that 
study, lobeline displaced D-Ala2, NME-Phe4, 
Gly5-ol-enkephalin (DAMGO) binding (Ki 
value ≈ 0.74 µM) in guinea pig brain 
homogenates, inhibited a DAMGO-induced 
potassium current in µ opiate receptors 
expressed in oocytes, and attenuated 

morphine-evoked dopamine release in rat 
striatum. Overall, these in vitro results [15] 
suggest that lobeline functions as a µ opiate 
receptor antagonist.  Regarding the impact of 
lobeline on the behavioral effects of µ opiate 
receptor agonists, Hart and colleagues 
recently showed that lobeline (1 – 3 mg/kg) 
decreased heroin (18 µg/kg/infusion) self-
administration in rats [16]. 
 
The goal of the present study was to further 
research on the interaction of lobeline with µ 
opiate receptors by determining if lobeline 
diminishes morphine-induced changes in 
locomotor activity after acute and repeated 
drug treatment to rats.  Previous studies have 
shown that morphine produces a slight 
decrease, a slight increase or no change in 
locomotor activity with acute injection [17-19], 
while increased locomotor activity is 
observed with repeated morphine treatment 
[20-22].     
 

EXPERIMENTAL 
 
Animals 
 
The University of Missouri Institutional Animal 
Care and Use Committee approved the 
study, which was conducted in accordance 
with the Guide for the Care and Use of 
Laboratory Animals [23].  Male Sprague-
Dawley rats (Harlan, Indianapolis IN, USA) 
were housed two per cage in a room 
controlled for temperature (maintained at ~ 
21° C) and humidity (maintained at 40-70%).  
Rats were allowed ad libitum access to 
standard chow (Teklad, Harlan, Indianapolis 
IN, USA) and tap water.  The animal facility 
was maintained on a 12-h/12-h light/dark 
cycle and behavioral testing was conducted 
during the cycle’s light phase.   
 
Drugs    
 
Lobeline sulfate was purchased from Acros 
Organics (Geel, Belgium) and morphine 
sulfate pentahydrate was purchased from 
Sigma (St. Louis MO, USA).  Both were 
prepared in saline (0.9 %w/v) and the  
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Table 1: Group assignment and injection regimen for Days 1 - 12 
 

Group First Injection Second Injection n 

Saline-Saline Saline Saline 14 
Saline-Morphine Saline Morphine (5 mg/kg) 16 
 Saline Morphine (10 mg/kg) 15 
Lobeline-Saline Lobeline (0.3 mg/kg) Saline 13 
 Lobeline (1.0 mg/kg) Saline 10 
Lobeline-Morphine Lobeline (0.3 mg/kg) Morphine (5 mg/kg) 8 
 Lobeline (0.3 mg/kg) Morphine (10 mg/kg) 8 
 Lobeline (1.0 mg/kg) Morphine (5 mg/kg) 9 
 Lobeline (1.0 mg/kg) Morphine (10 mg/kg) 8 

 
 
injection volume was 1 ml solution/kg body 

weight. Drug doses represent free base 

weight. 

 

Procedures  

 

Locomotor activity was monitored 

automatically using Med Associates’ (Georgia 

VT, USA) Open Field Test Environment 

(ENV-515) monitors.  Each monitor 

surrounded an acrylic cage (43.2 x 43.2 x 

30.5 cm), and each monitor and cage were 

housed in a sound-resistant cubicle (ENV-

017M).  Data were collected using Med 

Associates’ Open Field Activity Software 

(SOF-811) that recorded the number of 

monitor sensor breaks.  The software 

computed sensor break data to a measure of 

distance traveled (in cm).  This type of 

equipment was used in previous studies of 

lobeline’s effects on locomotor behavior [14].   

On two days prior to beginning of drug 

treatment, rats were injected (s.c.) with 

saline, placed in the monitor for 20 min, 

injected (i.p.) with saline, and returned to the 

monitor for 60 min.  This was done to 

acclimatize the rats to experimental 

procedures.   

 

On the next 12 consecutive days (Days 1 - 

12), rats received their first injection (saline or 

lobeline, s.c.), were placed in the monitor for 

20 min, received their second injection (saline 

or morphine, i.p.), and were returned to the 

monitor for 60 min.  Table 1 presents the 

group assignments that designated the first 

(i.e., saline or lobeline) and second (i.e., 

saline or morphine) injection received on 

Days 1 - 12 and the drug doses. 

 

On Days 1 – 12, rats in the Saline-Saline 

group received saline for both the first and 

the second injection.  For rats in the Saline-

Morphine groups, the first injection was saline 

and the second injection was morphine (5 or 

10 mg/kg).  For rats in the Lobeline-Saline 

groups, the first injection was lobeline (0.3 or 

1 mg/kg) and the second injection was saline.  

For rats in the Lobeline-Morphine groups, the 

first injection was lobeline (0.3 or 1 mg/kg) 

and the second injection was morphine (5 or 

10 mg/kg).  Rats received the same injection 

combination on Days 1 – 12.     

 

On Day 13, a follow-up experiment was 

performed to determine if an acute lobeline 

injection (challenge) alters the increased 

activity observed with repeated morphine 

treatment.  On Day 13 half (n = 7 - 8 rats) of 

the rats in the Saline-Morphine groups 

received saline followed by their regular 

morphine (5 or 10 mg/kg) injection.  The 

other half (n = 8 rats) of the rats in the Saline-

Morphine groups received lobeline (0.3 

mg/kg) followed by their regular morphine (5 

or 10 mg/kg) treatment.  On Day 13 half (n = 

7 rats) of the rats in the Saline-Saline group 

received two saline injections, and the other 

half (n = 7 rats) received lobeline (0.3 mg/kg) 

injection followed by a saline injection.   
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Data analyses   
 
The dependent measure for all analyses was 
distance traveled (in cm), which was collected 
in 5-min intervals.  For all analyses, significance 
was established a priori as p < 0.05.  Data from 
the entire 80-min period on each day (Days 1 - 
12) were analyzed via 4-way repeated 
measures analysis of variance (ANOVA).  In 
this analysis Day (Days 1 – 12) and Time 
(sixteen 5-min intervals, 80 min) were within-
subject factors and Lobeline Dose (0 [saline], 
0.3 and 1 mg/kg) and Morphine Dose (0 
[saline], 5 and 10 mg/kg) were between-group 
factors.  A second ANOVA was performed on 
data from the 60-min period after the second 
injection (morphine or saline) with Day and 
Time (twelve 5-min intervals, 60 min) as within-
subject factors and Lobeline Dose and 
Morphine Dose as between-group factors.  
Main effect analyses and Tukey post hoc 
analyses were then performed to determine 
between-group differences on each day and to 
examine within-subject differences across days.  
To determine if lobeline challenge alters 
morphine-induced hyperactivity on Day 13, data 
between saline and lobeline treatment 
conditions were compared via t-tests.   
 

RESULTS 
 

Analysis of distance traveled data from the 
entire 80-min period on Day 1 revealed a 
significant main effect of Lobeline Dose 
(F(1,38) = 5.67, p < 0.05) and a Lobeline 
Dose x Time interaction (F(15,570) = 7.30, p 
< 0.001).  Figure 1 presents distance traveled 
for rats in the Saline-Saline and Lobeline (0.3 
and 1 mg/kg)-Saline groups on Day 1.  Post 
hoc tests showed that there was less activity 
for the Lobeline (1 mg/kg)-Saline group than 
for the Saline-Saline group at the 5 and 10 
min time points.  There were no differences 
between the Lobeline (0.3 mg/kg)-Saline 
group and the Saline-Saline group at any 
time point.  Thus, the high--but not the low--
lobeline dose briefly decreased locomotor 
activity after acute injection.   
 
Neither the main effect of Morphine Dose, the 
Morphine Dose x Time, nor the Lobeline 
Dose x Morphine Dose x Time interaction, 

were significant on Day 1.  Thus, these 
morphine doses did not alter activity after 
acute administration. 

 
Figure 1: Data represent mean (±S.E.M) distance 
traveled.  The left arrow indicates the first (saline 
or lobeline) injection and the right arrow indicates 
the second (saline) injection.  Asterisks indicate a 
significant (p < 0.05) difference from the Saline-
Saline group at the respective time point. 

 
The next series of analyses examined the 
effect of lobeline across days.  Figure 2 
depicts total distance traveled during the 
entire 80-min session on Days 1 - 12 for rats 
in the Saline-Saline and Lobeline (0.3 and 1 
mg/kg)-Saline groups.  Analysis determined 
that neither the main effect of Lobeline Dose 
nor the Lobeline Dose x Day interaction were 
significant.  These results suggest that 
lobeline produced a decrease in activity on 
the first day (Day 1, Figure 1), it did not alter 
locomotor activity (i.e., produce an increase 
or decrease in activity) after repeated drug 
treatment. 
 

 
Figure 2: Data represent mean (±S.E.M) total 
distance traveled for the entire 80-min session. 
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To assess the interaction between lobeline 
and morphine with repeated administration, 
data from the 60-min period after the second 
injection (morphine or saline) on Days 1 - 12 
were analyzed.  A significant Lobeline Dose x 
Morphine Dose x Day interaction (F(11,418) 
= 2.43, p < 0.01) was found.   
 

Figure 3 depicts total distance traveled during 
the 60-min period after the second (saline or 
morphine) injection for rats in the Saline-
Saline and Saline-Morphine (5 and 10 mg/kg) 
groups.  Between-group comparisons 
revealed that rats in the Saline-Morphine (5 
mg/kg) group were more active than rats in 
the Saline-Saline group on Days 3 - 12.  A 
within-group analysis for the Saline-Morphine 
(5 mg/kg) group revealed that activity was 
greater on Days 4 - 12 compared to Day 1.  
Between-group analyses revealed that rats in 
the Saline-Morphine (10 mg/kg) group were 
more active than rats in the Saline-Saline 
group on Days 2 - 12.  Within-group analysis 
revealed greater activity for the Saline-
Morphine (10 mg/kg) group on Days 5 and 8 - 
12 than on Day 1.  Thus, repeated morphine 
treatment resulted in increased locomotor 
activity.  
 

 
Figure 3:  Data represent mean (±S.E.M) total 
distance traveled for the 60-min period after the 
second (saline or morphine) injection.  Asterisks 
designate a significant (p < 0.05) difference from 
the Saline-Saline group at the respective day.  

 
Figure 4 depicts total distance traveled during 
the 60-min period after the second 
(morphine) injection for rats that received the 
lower (5 mg/kg) morphine dose.  Rats in the 
Lobeline (0.3 mg/kg)-Morphine (5 mg/kg) 
group were less active than rats in the Saline-

Morphine (5 mg/kg) group on Days 7 and 9 - 
12.  Rats in the Lobeline (1 mg/kg)-Morphine 
(5 mg/kg) group were less active than rats in 
the Saline-Morphine (5 mg/kg) group on Days 
5, 7 and 9 - 12.  As such, lobeline attenuated 
the increased activity observed with repeated 
morphine (5 mg/kg) treatment. 

 
Figure 4:  Data represent mean (±S.E.M) total 
distance traveled for the 60-min period after the 
second (morphine) injection.  Asterisks designate 
a significant (p < 0.05) difference from the Saline-
Morphine group at the respective day. 

 
Figure 5 depicts total distance traveled during 
the 60-min period after the second 
(morphine) injection for rats that received the 
higher (10 mg/kg) morphine dose.  Rats in 
the lobeline (0.3 mg/kg)-Morphine (10 mg/kg) 
group were less active than rats in the Saline-
Morphine (10 mg/kg) group on Day 9.  Rats 
in the Lobeline (1 mg/kg)-Morphine (10 
mg/kg) group were less active than rats in the 
Saline-Morphine (10 mg/kg) group on Days 8, 
9 and 11.  Overall, these data indicate 
lobeline attenuated the increased activity 
observed with repeated morphine (10 mg/kg) 
treatment. 
 
The effect of acute lobeline challenge on 
morphine-induced increases in locomotor 
activity was determined on Day 13.  Figure 6 
depicts total distance traveled during the 60-
min period after the second (saline or 
morphine) injection.  There were no 
significant differences in activity between rats 
in the Saline-Saline group that were 
administered saline twice and those 
challenged with 0.3 mg/kg lobeline followed 
by saline.  Regarding the Saline-Morphine (5 
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mg/kg) group, rats challenged with lobeline 
(0.3 mg/kg) followed by 5 mg/kg morphine 
were less active than rats administered saline 
followed by morphine (5 mg/kg, t(15) = 4.11, 
p < 0.05).  Regarding the higher morphine 
dose (10 mg/kg), there were no significant 
differences between the group of rats 
administered saline followed by morphine (10 
mg/kg) and those challenged lobeline (0.3 
mg/kg) followed by morphine (10 mg/kg, data 
not shown).  Thus, acute lobeline challenge 
attenuated morphine (5 mg/kg)-induced 
hyperactivity. 

 

 
Figure 5:  Data represent mean (±S.E.M) total 
distance traveled for the 60-min period after the 
second (morphine) injection.  Asterisks designate 
a significant (p < 0.05) difference from the Saline-
Morphine group at the respective day. 

 
 

 
Figure 6:  Data represent mean (±S.E.M) distance 
for the 60-min period after the second (saline or 
morphine) injection.  Asterisks designate a 
significant (p < 0.05) difference from the Saline-
Morphine group 

 
 

DISCUSSION 
 
The present study determined the effect of 
lobeline on changes in locomotor activity after 
acute and repeated morphine treatment.  It 
follows previous experiments where lobeline 
blocked the effects of opiate receptor 
agonists in vitro [15] and diminished heroin 
self-administration [16]. 
 
Recently, Harrod and Van Horn reported a 
lobeline-induced decrease in locomotor 
activity in rats, but tolerance developed to this 
inhibition with repeated lobeline treatment 
[24].  Similar findings were observed 
presently, where the 1 mg/kg lobeline dose 
decreased activity, relative to the saline-
treated group, during the first 15 min on Day 
1, but no other differences were observed. 
 
In previous studies, acute lobeline treatment 
diminished the drug-induced increase in 
locomotor activity observed after acute 
cocaine and d-amphetamine administration 
[13,14].  The interaction of acute lobeline and 
morphine treatment could not be determined 
presently because acute morphine treatment 
did not significantly change activity (i.e., it did 
not increase or decrease activity).  Others 
have shown that acute morphine treatment in 
rats, within the range tested here (5 – 10 
mg/kg), decreases activity during the first 60 
– 90 min after parenteral administration [17], 
while others report that increased activity is 
observed after initial morphine injection 
[18,19].  An important factor in the initial 
response to morphine is the context in which 
the opiate is administered.  Palone and 
colleagues [19] demonstrated a larger 
response to morphine when the drug was 
administered in a novel environment, than 
when the drug was administered in a familiar 
one [19].  Presently, rats were acclimated 
(i.e., habituated) to the monitors for two 
consecutive days prior to acute morphine 
treatment.   
 
With repeated morphine treatment, a dose-
dependent increase in activity was observed 
in morphine-treated rats, relative to saline-
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treated rats, consistent with other morphine 
locomotor activity studies [18,21,22].  Most 
research investigating activity with repeated 
drug treatment focuses on the development 
of sensitization [25].  We are hesitant to 
define the present results in the realm of 
sensitization, as morphine was ineffective to 
increase locomotor behavior at the first 
presentation.  However, the observation of 
increasing activity with repeated opiate 
treatment likely reflects the processes (e.g., 
change in glutamate and dopamine 
communication) described in the sensitization 
literature [26]. The lobeline challenge (Day 
13) results suggest that lobeline attenuates 
the expression of morphine sensitization. 
 
In a dose-dependent manner, lobeline 
attenuated the morphine-induced increases 
in activity observed after repeated (Day 1 - 
12) drug treatment.  With 5 mg/kg morphine, 
the 1 mg/kg lobeline dose attenuated 
morphine’s effects to a greater degree than 
the 0.3 mg/kg lobeline dose.  A similar 
lobeline dose-dependent inhibition was 
observed with 10 mg/kg morphine.  However, 
lobeline’s inhibitory effect was less 
pronounced with 10 mg/kg morphine than 
with 5 mg/kg morphine.  This suggests that 
the lobeline (putative antagonist) inhibition 
was surmounted by increasing the morphine 
(agonist) dose, which is characteristic of 
pharmacological antagonism.  This supports 
in vitro work suggesting lobeline is a µ opiate 
receptor antagonist [15].   
 
Others have shown that opiate receptors 
modulate morphine’s effects on activity [18].  
Opiate receptor antagonism is one possible 
mechanism for lobeline to produce the 
present results.  However, lobeline interacts 
with other neural targets associated with 
drug-induced behaviors within the same 
concentration range (Ki value ≈ 0.7 – 50 µM 
for DAT and VMAT2 [7, 8]) or at lower 
concentrations (Ki value ≈ 0.005 – 0.05 µM 
for nicotinic acetylcholine receptors [5, 6]) 
than where lobeline has affinity for µ opiate 
receptors (Ki value ≈ 0.7 µM [15]).  Lobeline’s 
affinity for nicotinic acetylcholine receptors is 

a likely target, as these receptors have a 
modulatory role in morphine’s effects on 
rodent behavior [27,28].  Biala and Staniak 
(2010) recently reported that nicotinic 
receptor agonists and antagonists attenuated 
locomotor cross-sensitzation between 
nicotine and morphine in mice [27].   
 
The present study and previous work with 
lobeline [3, 29] suggest that lobeline may 
have clinical potential as a treatment for 
managing narcotic abuse and dependence.  
Lobeline decreases heroin self-administration 
behavior [16], which models drug-taking 
behavior in humans.   Various lobeline 
analogs have been reported in the literature 
[6] and these ligands may produce greater 
inhibition of opiate effects.  More experiments 
are required--including studies on lobeline’s 
interaction with the physical and 
psychological withdrawal symptoms that 
contribute to opiate dependence--to 
understand lobeline’s potential as an 
addiction treatment.  
 

CONCLUSION  
 

Morphine produced a marked increase in 
locomotor activity with repeated treatment.  
Lobeline, a ligand with a multifaceted 
pharmacological profile, attenuated the 
morphine-induced increase in locomotor 
activity with repeated opiate treatment and in 
an acute lobeline challenge.  These findings 
are consistent with lobeline’s activity as a 
putative µ opiate receptor antagonist and its 
ability to diminish the effects of µ opiate 
receptor agonists in vitro and in vivo. 
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