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Abstract 

Purpose: To to develop and evaluate matrix-type ondansetron hydrochloride (OS) transdermal patch 
for the treatment of chemotherapy-induced nausea and vomiting. 
Methods: Transdermal patches were prepared by solvent casting method using ethyl cellulose and 
polyvinyl pyrrolidone as matrix materials, and dibutyl phthalate and dibutyl sebacate as plasticizers. The 
formulations were evaluated for patch thickness, tensile strength, moisture content, water absorption 
capacity and drug content. In vitro drug release and permeation of the patches were determined using a 
Franz diffusion cell.  
Results: the tensile strength of all the formulations was in the range from 6.09 to 9.85 Mpa indicating 
that the [patches were strong. Maximum drug release in 8 h for dibutyl phthalate DBP and dibutyl 
sebacate DBS patches was 38.9  (DB6) and 53.4 % (DS3), respectively, which are significantly (p < 
0.01) higher than the  lowest values of 17.8 (for DB1) and 35.0 % for (DS5), respectively. Drug release 
rate was 1.89 and 3.93 μg/h/cm2, respectively with DS2 and DB2 showing the highest permeation rate 
of 5.39 μg/h/cm2. Patches containing DBP followed Higuchi release model while patches formulated 
with DBS followed first order release kinetics.  
Conclusion: Ondansetron matrix-type transdermal patches formulated with suitable amounts of 
chemical enhancers for better patient compliance are feasible. 
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INTRODUCTION 
 
Chemotherapy-induced nausea vomiting (CINV) 
is one of the most distressing side effects of 
chemotherapy; approximately 70 % of patients 
who receive chemotherapy will experience some 
level of CINV [1]. CINV can cause significant 
discomfort and anxiety, dehydration, electrolyte 
imbalances, affect normal physical and mental 
function, and decrease quality of life [2]. Hence, 
some patients may choose to give up the 

beneficial chemotherapy in the end due to its 
side effects [1]. Although researchers ar keep 
finding more effective therapy for CINV every 
year, CINV still remains as an important issue [3-
5]. None of the therapies has completely solved 
the problem; in fact, up to 30 % of the patients 
xperience refractory nausea vomiting and also 
delayed CINV, even with the best antiemetic 
treatment [6].  
 
Ondansetron (OS), a member of the serotonin 
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 (5-hydroxytryptamine) subtype 3 (5-HT3) group 
of receptor antagonists, can effectively act on 
chemoreceptor trigger zone of postrema to 
control nausea and vomiting. As OS does not 
inhibit dopamine subtype-2 receptors, it does not 
cause side effects such as extrapyramidal 
reactions [7]. Although OS is a potent antiemetic, 
including for patients receiving highly emetogenic 
agents, oral administration is only effective in 
patients who can swallow medications after 
chemotherapy [8].  
 
Several disadvantages with oral, intravenous and 
rectal administration include extensive liver 
metabolism, low bioavailability, vomiting before 
drug absorption, rapid onset that may result in 
undesirable side effects, high clearance, short 
half-life, and low patient compliance [9]. To 
overcome these, Gwak et. al [8] had studied the 
feasibility of transdermal OS patch delivery using 
pressure sensitive adhesives. Other studies have 
shown that placing transdermal patch on a 
patient’s skin for 24 - 48 h before chemotherapy 
is just as effective as the oral capsule [1]. 
Therefore, the objective of the present study was 
to optimize OS transdermal patch formulation for 
the treatment of CINV. 
 
EXPERIMENTAL 
 
Materials  
 
Ondansetron hydrochloride was obtained as a 
gift from Aurobindo Chemicals, India. Ethyl 
cellulose (EC; ethoxy content 48.0 - 49.5 %, 
viscosity 18 to 22 mPa) was received from Dow 
Chemicals, Germany. Polyvinyl pyrrolidone (PVP 
K-30) was obtained as a gift from BASF 
Chemical Company, Germany. Dibutyl phthalate 
(DBP) and dibutyl sebacate (DBS) were 
purchased from Sigma-Aldrich Chemie GmbH, 
Riedstr, and Merck Chemicals, Germany 
respectively. Linseed oil was received as a gift 
from John L Seatons & Co Ltd, UK, and complied 
with British Pharmacopoeia (BP)/European 
harmacopoeia(EP) standard. L-menthol was 
purchased from Spectrum Chemical Mfg Corp, 
USA. All the solvents used were of analytical 
reagent grade.  
 
Preparation of the patches 
 
The polymers were accurately weighed and 
dissolved in 5 mL of chloroform.. The required 
amount of plasticizer, dibutyl phthalate (DBP) or 
dibutyl sebacate (DBS), was added next, 
followed by the addition of OS, and then gently 
stirred for 20 mins 15 - 20 min. For patch 
containing enhancers, the enhancers were 
added after the drug and stirred for another 15 - 

20 min. The resulting homogenous solution was 
slowly poured within a stainless steel ring with a 
backing layer of aluminium foil and dried at room 
temperature for 48 h 24 - 48 h [11]. 
 
Patch thickness 
 
Patch thickness was measured using a digital 
micrometer (Mitutoyo, Japan) [11]. The results 
are reported as amean of six readings (Table 1).  
 
Tensile strength 
 
Tensile strength (τ) was measured using a 
tensilometer (Instron, UK), and calculated as in 
Eq 1.  
 
τ = Lmax/Ai  ……………………………………….   (1) 
 
where Lmax = maximum load and Ai = initial 
cross sectional area of the sample [11]. The 
results are reported as mean of three readings 
(Table 1). 
 
Drug content 
 
A circular patch (1 cm2) was cut, weighed and 
dissolved in chloroform. Chloroform Distilled 
water was added to dilute to 100 ml, , the same 
solution filtered through whatman filter paper 
(Grade :1, 11µm) and analysed for drug content 
at 249nm using a UV spectrophotometer 
(Perkin-Elmer). The same procedure was 
carried out for control (drug-free) film [11]. The 
results are reported as mean of three readings 
(Table 2). 
 
Moisture content 
 
The test patches were weighed individually and 
placed in a desiccator containing fused calcium 
chloride at 40 oC for 24 h. The patches were re-
weighed until a constant weight was obtained. 
The moisture content was calculated as as 
percent loss in weight [11] and expressed as 
mean (n = 3, Table 2). 
 
Water absorption studies 
 
The patches were weighed individually, kept at 
room temperature for 24 h and then exposed to 
two relative humidities: 75 % (saturated aqueous 
solution of sodium chloride) and 93 % (saturated 
aqueous solution of ammonium hydrogen 
phosphate) in separate desiccators. The patches 
were re-weighed until constant weight was 
obtained. Water absorption capacity was 
calculated as percent gain in weight [11] and 
expressed as mean (n = 3, Table 2). 
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In vitro release studies 
 
In vitro release studies were carried out using 
Franz diffusion cell (Perme Gear, USA), whereby 
a piece of the circular patches was mounted over 
the donor compartment. The backing membrane 
side of the patch was exposed to the atmosphere 
while the receptor compartment was filled with 
freshly prepared phosphate buffered saline (pH 
7.4). Temperature was maintained at 32 oC by 
circulating water through the water jacket and 
stirring at 50 40 – 50 rpm. The patch was in 
contact with the receptor liquid surface. Samples 
(0.5 mL) were withdrawn at 1 h interval for 8 h 
and immediately replaced with the same volume 
of medium. Each sample was filtered, diluted 
suitably and analyzed spectrophotometrically at 
249 nm [11]. The mean of three readings was 
taken. In order to investigate drug release 
mechanism, the data were fitted to zero order, 
first order, Higuchi and Korsmeyer-Peppas 
release models as in Eqs 1 – 4, respectively..  
 
      00 KMM t   ………………….. (1) 
 
where Mt is the amount of drug released at time 
t, K0 is the apparent dissolution rate constant or 
zero-order release constant and M0 is the initial 
amount of the drug in the solution as a result of 
‘burst’ effect. In this model, the drug releases at 
constant rate. 
   tKMM t 10lnln   ………………… (2) 
where K1 is the first-order release constant. In 
this model, the drug released at any time, t, is 
proportional to the residual drug inside the 
dosage form. 

 2/1
0 tKMM Ht   ……………………….. (3) 

where KH is the Higuchi release constant. This is 
the most widely used model to describe drug 
release from pharmaceutical matrices. 
   n

KPt tKMMMM   0  …….. (4) 
where KKP is a constant incorporating structural 
and geometric characteristic of the drug-dosage 
form and n is the release exponent, indicative of 
the drug-release mechanism. Peppas used this 
n-value in order to characterize different release 
mechanisms. When n = 0.5 (for a slab), the drug 
diffuses through and is released from the matrix 
with a quasi-fickian diffusion mechanism. For 
n > 0.5, an anomalous, non-fickian drug diffusion 
occurs. When n =1.0, a non-fickian, Case II or 
zero-order release kinetics could be observed. 
For determining of the exponent n, the portion of 
the release curve where Mt/M∞ < 0.6is only used. 
To use this equation it is also necessary that 
release occurs in one-dimensional way and that 
the system width/thickness or length/thickness 

relation be at least 10, such as in transdermal 
delivery system.  
 
In vitro permeation studies 
 
A section of freshly excised albino mouse 
abdominal skin  was shaved and removed skin 
fatty tissue with help of scrapper. The skin 
sample immersed in isotonic solution (0.9 g 
sodium chloride dissolved in 100 mL of reverse 
osmosis R.O water) for the purpose of remove 
the unwanted protiens. The test patch was bound 
intimately with help of adhesive on mouse skin 
and placed over the top of the donor 
compartment of Franz diffusion cell. The dermal 
side of the skin just touched the receptor liquid 
surface. All other analysis conditions were similar 
to those for in vitro release studies [11]. The 
mean of three readings was taken..  
After reviewing all the in vitro factors affecting the 
mechanical, release and physiochemical 
properties of the patches, some of patches were 
selected for skin permeation studies. 
 
Statistical analysis  
 
Release data were evaluated with one-way 
analysis of variance (ANOVA). Where there was 
statistically significant difference, post-hoc 
Tukey-HSD (Honestly Significant Difference) test 
was performed. Differences between release 
data were considered statistically significant at p 
≤ 0.05. 
 
RESULTS  
 
Thickness and tensile strength  
 
The patch thickness and tensile strength results 
are shown in Table 1. Mean thicknesses varied 
from 0.195 to 0.235 mm while mean tensile 
strength was in the range 6.09 to 9.85MPa. 
Thicknesses is gradually decreasing with 
increasing the amount of plasticizers and PVP 
percentages in the patch whereas tensile 
strengths increased which is most preferable 
physiochemical properties for the patient.  
 
Drug content, moisture content and water 
absorption of patches  
 
The results of assessment of drug content, 
moisture content and water absorption of 
patches are shown in Table 2 Drug content of 
patches ranged from 425.6 to 427.0 mcg/cm2, 
indicating a mean drug content of > 99 % of the 
theoretical amount.  
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Table 1: Transdermal ondansetron patch characteristics 
 

Patch code 
EC : OS 

350 : 16 (mg) 

PVP  
(mg) 

Plasticizer 
(%) 

Thickness (mm) Tensile strength 
(MPa) 

DB 1 150 30 0.217 6.54 ± 0.37 
DB 2 150 40 0.220 6.23 ± 0.75 
DB 3 150 50 0.223 6.09 ± 0.35 
DB 4 200 30 0.219 7.44 ± 0.98 
DB 5 200 40 0.223 7.24 ± 0.23 
DB 6 200 50 0.227 6.31 ± 0.76 
DB 7 250 10 0.221 8.86 ± 0.39 
DB 8 250 20 0.225 8.63 ± 0.61 
DB 9 250 30 0.228 8.18 ± 0.16 
DB 10 250 40 0.231 7.82 ± 0.82 
DB 11 250 

 
 
 
 
 

DBP 

50 0.235 7.59 ± 0.94 
DS 1 150 30 0.195 7.46 ± 1.10 
DS 2 150 40 0.199 7.31 ± 0.53 
DS 3 150 50 0.205 7.23 ± 0.49 
DS 4 200 30 0.198 9.85 ± 1.07 
DS 5 200 40 0.203 9.65 ± 0.34 
DS 6 200 

 
 

DBS 

50 0.208 8.23 ± 0.51 
Key: EC = ethyl cellulose; OS = ondansetron hydrochloride; PVP = polyvinyl pyrrolidone; DBP = dibutyl phthalate; DBS = 
dibutyl sebacate  
 

Table 2: Drug content, moisture content and water absorption of ondansetron patch 
 

Water absorption (wt %) Patch code Drug content 
(mcg/cm2) 

Moisture content 
(wt %) 75% RH 93% RH 

DB 1 425.87 1.67 2.10 2.38 
DB 2 426.11 1.42 1.90 2.19 
DB 3 426.39 1.24 1.76 2.08 
DB 4 426.52 1.97 2.38 2.81 
DB 5 426.92 1.86 2.16 2.68 
DB 6 426.78 1.73 2.04 2.47 
DB 7 425.98 2.73 2.86 3.18 
DB 8 426.85 2.67 2.67 3.02 
DB 9 426.09 2.56 2.49 2.81 
DB 10 426.83 2.17 2.27 2.69 
DB 11 426.91 2.03 2.18 2.49 
DS 1 425.58 1.16 1.37 2.07 
DS 2 425.99 1.02 1.18 1.81 
DS 3 426.31 0.86 1.06 1.57 
DS 4 426.14 1.42 1.97 2.19 
DS 5 426.57 1.28 1.81 2.09 
DS 6 426.83 1.15 1.56 1.82 

 
In vitro drug release  
 
The release data over 8 h are shown in the 
Figures 1 and 2..  Higher amount of PVP in the 
patches have a greater dissolution of more and 
more PVP in the diffusion medium forms pores 
which increase the rate of diffusion. And also the 
percentage drug release is based on various 
factors like solubility of the drug in the polymer 

and solubility of drug in other ingredients. The 
hydrophobic plasticizers DBP and DBS and 
hydrophilic nature PVP copolymer give ideals 
release pattern. Furthermore, in terms of physical 
appearance, DBP patches were appeared to 
have better quality and smoothness than DBS 
patches [11, 15]. 
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Figure 1: Release profile of patches containing 
DBP. Key: Formulations DB1 (♦), DB2 (■), DB3 
(▲), DB4 (x), DB5 (*), DB6 (●) 

 
Figure 2: Release profiles of patches containing 
DBS. Key: Formulations DBS1 (♦), DS2 (■), DS3 
(▲), DS4 (x), DS5 (*), DS6 (●) 
 

Table 3: Release and kinetic data 
 

Zero order First order Higuchi release Korsmeyer-peppas Patch 
code K0 R2 K1 R2 K0.5 R2 n R2 
DB1 1.43 0.9876 -0.097 0.9213 7.46 0.9966 0.61 0.9947 
DB2 1.86 0.9823 -0.101 0.9139 9.68 0.9961 0.64 0.9951 
DB3 2.43 0.9839 -0.088 0.8606 12.92 0.9977 0.57 0.9808 
DB4 2.30 0.9437 -0.122 0.9679 10.36 0.9928 0.74 0.9653 
DB5 1.24 0.9838 -0.081 0.9481 6.44 0.9975 0.49 0.9833 
DB6 1.46 0.9932 -0.101 0.8831 7.68 0.9901 0.65 0.9988 
DS1 1.85 0.9721 -0.076 0.9988 9.78 0.9982 0.48 0.9962 
DS2 1.60 0.9681 -0.085 0.9969 8.30 0.9749 0.52 0.9746 
DS3 1.99 0.9588 -0.111 0.9891 10.31 0.9728 0.68 0.9969 
DS4 1.52 0.9721 -0.078 0.9959 8.01 0.9882 0.50 0.9969 
DS5 1.52 0.9689 -0.081 0.9915 7.81 0.9793 0.49 0.9732 
DS6 1.67 0.9648 -0.092 0.9832 8.63 0.9663 0.57 0.9816 

 
In vivo permeation 
 

Cumulative drug permeation data through the 
best three patches are shown in Figure 3. 
The percent release for DB2 at 3% linseed oil 
was observed to be 1.5 times greater with 
respect to the same formulation without 
enhancer (p≤0.05), whereas DB1 and DB3 at 3% 
linseed oil appeared to increase transport of OS, 
but this increased did not show a significant 
difference (p>0.05). In general, a moderate 
increase in release of drug was achieved by 
incorporating 4% linseed oil (DB 1-3) however; a 
definite increase in release of drug was only 
seen following the addition of 40% DBP and 4% 
linseed oil. Hence, the maximum percent release 
was seen at patch DB2 with 4% linseed oil, 
approximately 2.5 times greater to DB2 alone 
(p≤0.05).  
 
The increasing drug permeation rate with the 
increase in PVP content may be due to its 

antinucleating effect as well as different types of 
chemical enhancers affecting the permeation 
pattern.  
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Figure 3: Permeation profile of patches containing 
DBP and 4 % linseed oil 
Key: DB1 (♦), DB2 (■) and DB3 (▲) 
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DISCUSSION 
 
The decrease in patch strength by the 
plasticizers is due to the interposition of the latter 
between polymer chains of the matrix, thus 
reduceing intermolecular forces and thereby, the 
mechanical strength of the patches [12]. Increase 
in patch strength by PVP may be attributed to the 
formation of crosslinks within the EC matrix, thus 
strengthening intermolecular bonds [13]. 
Generally, both plasticizers DBP and DBS did 
not show much difference on mechanical 
properties, though DBP containing patches 
showing slightly lower tensile strength owing to 
smaller size for incorporation than DBS. Less 
than 30 % of DBS is required to produce a stiff, 
strong EC membrane which on iys own is brittle 
[14] Findings from our studies confirm this same 
observation.  
 
Tensile strength is important to ascertain the 
maximum force that a patch can withstand while 
it is being stretched as well as indicate how well 
a patch can remain intact during biomechanical 
movement of the human body. For optimum 
elasticity on human usage, it has been that 
tensile strength should be > 4 MPa [11]. 
 
 Moisture content and water absorption capacity 
were largely dependent on the amounts of PVP 
and plasticizer in the patch. PVP, being 
hygroscopic, would readily absorb moisture from 
the atmosphere into the patch, which explains 
the higher moisture content and water absorption 
of patches the higher the PVP level [11]. Since 
both DBP and DBS are hydrophobic, increasing 
the content of plasticizer reduced moisture 
content and water uptake of the patch.  
 
The percentage of release increased when 
percentage of plasticizer was also increased 
(DB3 > DB2 > DB1, etc). The reverse, however, 
was seen for PVP incorporation (DB4 > DB1; 
DB5 > DB2; DB6 > DB3) as a rise in the polymer 
content enhanced release rate as a result of 
invreased water absorption which caused 
swelling of the polymeric matrix, thus widening 
the diffusion pathways and facilitating drug 
diffusion.  
 
DBS is suitable for rapid release while DBP is 
ideal for prolong release [17]. This explains why 
patches containing DBS showed higher and 
faster release than those containing DBP. The 
reason may be due to breakdown of secondary 
polymer chain bonding by DBS thus providing 
more space for the drug to diffuse.  
 
For some of the formulations, the presence of 
linseed oil decreased OS release from the 

patches without enhancer. Low release rate may 
be due to the higher hydrophobicity of the 
patches as well as formation of drug-in-oil 
dispersion which would retard the diffusion of 
drug from the patches [19].  
 
From the figure and table 3 shows that the drug 
release from patches containing DBP followed 
Higuchi release model, indicating diffusion 
controlled release. On the other hand, patches 
containing DBS followed first order release, 
indicating that drug release rate was dependent 
on drug concentration. Patches containing DBS 
released drug faster than those containing DBP 
due to the greater uniformity of drug distribution 
in the polymer matrix and hence higher surface 
diffusion, and also to the fact that DBS relaxes 
the chains of the polymer more effectively than 
DBP, thus increasing the rate of drug diffusion. It 
has been reported that drug release from a 
transdermal drug delivery system mainly involves 
diffusion [18].  
 
It has been reported that linseed oil enhances 
the permeation of drug by disrupting the lipid 
structure of stratum corneum, thereby 
increaseing the diffusion coefficient of the drug 
across the skin.[19] In the present study, linseed 
oil is superior to L-menthol in enhancing drug 
permeation due probably to higher solubility in 
the polymer matrix, Both the in vitro drug release 
and skin permeation results indicate skin is a 
rate-limiting factor in transdermal delivery since 
the values for the former were higher than those 
for the latter. The rate of drug permeation was 
fairly constant over time and the permeation 
profiles exhibited concentration-dependent first-
order kinetics.  
 
CONCLUSION 
 
Of all the patches, DB2, which contains 4 % 
linseed oil, may be is the suitable for transdermal 
delivery due to its good mechanical and 
physicochemical properties, uniform drug 
release/permeation with diffusion-controlled 
release mechanism. Further studies, including 
pharmacokinetic investigations, are however 
required to confirm findings from this study.  
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