Original Research Article

In vitro Anti-Gastric Tumor Activities and Possible Mechanisms of Action of Paederosidic Acid from Paederia scandens (Lour) Merrill

Li-lin Chen ${ }^{1}$, Ru Zeng ${ }^{1}$ and Yan-zhen Zhuang ${ }^{2 *}$
${ }^{1}$ Department of Medical Oncology, ${ }^{2}$ Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, China

*For correspondence: Email: yzhenzhuang@163.com
Received: 2 December 2014
Revised accepted: 16 April 2015

Abstract

Purpose: To evaluate the anti-tumor activity and explore the possible mechanisms of action of paederosidic acid isolated from Paederia scandens (Lour.) Merrill. Methods: Paederosidic acid (PA) was isolated from P. scandens and identified by spectroscopic methods. The cytotoxic effects of PA in gastric cancer cell lines (MGC-803, BGC-823, and SGC-7901 cells) were assayed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT). Apoptosis of PA in SGC-7901 cells was evaluated by DAPI staining. To investigate the possible mechanisms of apoptosis, the effect of PA on C-caspase-3, C-caspase-9, Bcl-2 and Bax expressions in SGC-7901 cells were assayed by Western blot analysis. Results: PA exerted significant inhibitory effects on MGC-803, BGC-823, and SGC-7901 cells with 50 $\%$ inhibitory concentration (IC50) values of 42.2, 43.7, and $30.5 \mu \mathrm{M}$, respectively, and in a concentration-dependent manner. Subsequently, SGC-7901 cells were selected for further studies. After treatment with PA, obvious condensation of the nucleus was observed in fluorescence photomicrographs, which is a characteristic of apoptosis. In addition, caspase-3, caspase-9 proteins and Bax were significantly up-regulated ($p<0.05$), whereas Bcl-2 was significantly down-regulated ($p<$ 0.05) by PA in a concentration-dependent manner.

Conclusion: PA has significant anti-tumor activity on SGC-7901 cells in vitro, and the possible mechanism of action may be related to PA-induced apoptosis via mitochondria-mediated apoptosis pathway.

Keywords: Paederosidic acid, Paederia scandens, Anti-tumor activity, Apoptosis, Gastric cancer

Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts

INTRODUCTION

Gastric cancer (GC) is a common cancer worldwide, and it is also the second leading cause of cancer mortality [1]. Chemotherapy is one of the primary treatments for patients with advanced GC [2,3], but for most patients, chemotherapy usually causes serious side effects and is ineffective against GC due to multidrug resistance (MDR) [3-5]. Therefore, it is of
great significance to find new approaches for treating GC.

For thousands of years, traditional Chinese Medicine (TCM) has been applied in many fields of human health. With its impressive achievements, TCM is being increasingly acknowledged all over the world $[6,7]$.

Paederia scandens (Lour.) Merrill, known as "Ji Shi Teng" in Chinese, is a climbing plant belonging to the family Rubiaceae [8]. It is widely distributed in China, India, Vietnam, Japan, the Philippines, and the USA. In South-East Asia, the whole plant of Paederia scandens has been traditionally used as a folk medicine and food for thousands of years. Paederosidic Acid (PA) is an active component isolated from P. scandens, it has been reported to have some pharmacological activities, such as anticonvulsant effect, sedative effect [5], and antinociceptive effect [9], but there has been no report on its anti-tumor activity so far.

EXPERIMENTAL

Plant material

P. scandens was purchased from Hehuachi Market of Traditional Chinese Herbs (Chengdu, China), and Identified by an expert in the Traditional Chinese Medicine (TCM) Department of The First Affiliated Hospital of Xiamen University. A voucher specimen (no. S20130802) was deposited in our laboratory herbarium.

Chemicals

The following reagents and drugs were used: Sephadex LH-20 [H\&E Co, Ltd (Beijing, China)]; silica-gel (74-154 $\mu \mathrm{m}$ and 50-74 $\mu \mathrm{m}$, Qingdao Haiyang Chemical Co Ltd. Qingdao, China); petroleum ether, analytical reagent grade (AR), ethyl alcohol (EtOH, AR), methyl alcohol (MeOH, $A R$), n-butanol (AR) and ethyl acetate (AR, Sinopharm Chemical Reagent Co, Ltd, Shanghai, China); 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 4',6-Diamidino-2-phenylindole dihydrochloride(DAPI) and dimethyl sulfoxide reagent (Sigma Aldrich, St Louis, MO, USA); fetal bovine serum (FBS) and RPMI 1640 media (Invitrogen, Carlsbad, California, CA, USA); c-caspase-3, c-caspase-9, Bcl-2 and Bax monoclonal antibody (Beyotime, Jiangsu, China).

Cell culture

Three tumor cell lines, MGC-803, BGC-823 and SGC-7901 were purchased from American Type Culture Collection (Manassas, Virginia, VA, USA). All cell lines were cultured in RPMI-1640 medium with 10% fetal bovine serum, $100 \mathrm{U} / \mathrm{mL}$ penicillin and $100 \mathrm{mg} / \mathrm{mL}$ streptomycin. All these cells were incubated in the presence of $5 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$.

Isolation and purification of paederosidic acid (PA) from P. scandens

The whole plant of P. scandens (45 kg) was dried by airing at room temperature and powdered, extracted with 60 \% EtOH by reflux. The EtOH extract was partitioned with n-butanol, ethyl acetate, and petroleum ether, respectively. A residue of the n-butanol fraction was obtained by reduced pressure drying (RE52CS-1 rotary evaporator, YaRong biochemical instrument, Shanghai).

The n-butanol fraction was eluted through silicagel (100-200 mesh) with $\mathrm{CHCl}_{3}: \mathrm{MeOH}$ (15:1, 10:1, $8: 1,5: 1,2: 1,1: 1$) and a series of sub fractions (I-VI) were obtained. Columns of silica gel (200-300 mesh), Sephadex LH-20 (GE) and a reverse phase preparative-HPLC [solvent = $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (60:40)] with flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ were used to purify PA. Finally, the purified product of 3.56 g was obtained from fraction II.

Identification of the compound isolated from P. scandens

The identification of PA (Fig 1) was accomplished by spectroscopic methods (MS, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) and the spectral data of PA are corresponding to literature values [8,10]. PA was purified with purity not less than 98% (HPLC assay).

Fig. 1: Structure of the Paederosidic acid (PA)

MTT reduction assay

Cells ($1 \times 10^{4} / 0.2 \mathrm{~mL}$) were seeded into 96 -well plates and indicated concentrations of PA for 48 h. The standard protocol was used to carry out MTT assay, $20 \mu \mathrm{~L}$ of $5 \mathrm{mg} / \mathrm{mL}$ MTT solution was added to each well and the plates were incubated for 4 h. Subsequently, the supernatant was aspirated and $150 \mu \mathrm{~L}$ DMSO was added to each well. A 96-well plate reader (Bio-rad Microplate Reader Model 550) was used to read the absorbance at 570 nm . The viability of the cells was measured by the level of activity
because reduction of MTT only occurs in metabolically active cells. Cell inhibition (C) was computed as in Eq 1.
$C(\%)=\{(A c-A t) / A c\} 100$
where Ac and At are the absorbance of control and treated cells, respectively.

Apoptosis assay

The cells $\left(1 \times 10^{4} / 0.2 \mathrm{~mL}\right)$ were seeded in 96 well plates and treated with PA at concentrations of $10,20,40 \mu \mathrm{M}$ for 48 h . Then cells were stained by DAPI, observed and photographed by using a fluorescence microscope ($\times 200$, BX41-32PO2-FLB3, Olympus, Tokyo, Japan).

Western blot analysis

Total proteins were extracted from cells or tumor tissues, and then separated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) and electro transferred onto polyvinylidene difluoride (PVDF). Proteins were probed with corresponding primary monoclonal antibody respectively and with goat antirabbit/HRP subsequently, and then detected by using the chemiluminescence peroxidase reagents. Antibodies directed against β-actin were used to measure protein loading.

Statistical analysis

Data are shown as mean \pm SEM ($n=3$). The scientific statistic software (SPSS13.0 software, SPSS, USA) was used to evaluate the significance of differences between groups. Results were analyzed by one-way analysis of
variance (ANOVA) and $p<0.05$ was considered significant.

RESULTS

Cytotoxic effect of paederosidic acid (PA) on MGC-803, BGC-823, and SGC-7901 cells

As shown in Fig 2, PA exerted significant inhibitory effects on MGC-803, BGC-823, and SGC-7901 cells with IC_{50} values of 42.2, 43.7, and $30.5 \mu \mathrm{M}$, respectively, in a concentrationdependent manner. Then, the SGC-7901 cell line was selected from three cell lines for further research due to PA possess the best antiproliferative effect on SGC-7901 among the three tested cell lines.

Effect of paederosidic acid (PA) on apoptosis in SGC-7901 cells

To explore the induction of apoptosis by PA in SGC-7901 cells, fluorescence photomicrographs were recorded after staining with DAPI. After treatment with PA, significant condensation of the nucleus was induced as shown in Figure 3, which meets the characteristics of apoptosis.

Induced apoptosis of paederosidic acid in SGC-7901 cells

In the present study, SGC-7901 Cells were treated with PA. As a result, the caspase-3 and caspase-9 proteins were significantly upregulated (at the concentrations of 10, 20, 40 $\mu \mathrm{M})$ by treatment with PA, in a concentrationdependent manner (Fig 4).

Fig 2: Cytotoxic effects of PA on gastric carcinoma cells ($n=4$). Cells were treated with PA at the concentrations range from $5-160 \mu \mathrm{M}$ for 48 hours, the cells viabilities were determined by the MTT assay. IC_{50} values of PA on MGC-803, BGC-823, and SGC-7901 cells were 42.2, 43.7, and $30.5 \mu \mathrm{M}$, respectively

Fig 3: Determination of apoptosis in SGC-7901 cells by DAPI staining. Cells were treated with PA at concentrations of 10,20 , and $40 \mu \mathrm{M}$ for 48 hours, then cells were stained by DAPI and observed by fluorescence photomicrography ($\times 200$). A-D represented the control, $10 \mu \mathrm{M}, 20 \mu \mathrm{M}$, and $40 \mu \mathrm{M}$, respectively

Fig 4: Effect of PA on C-caspase-3 and C-caspase-9 expressions in SGC-7901 cells. Cells were treated with PA at the concentrations of 10,20 , and $40 \mu \mathrm{M}$ for 48 h , and the whole cell lysates were determined by western blot analysis using antibodies for C-caspase-3 and C-caspase-9 as indicated

The results indicate that PA can significantly down-regulate the expressions of $\mathrm{Bcl}-2$ (at the concentrations of $10,20,40 \mu \mathrm{M}, p<0.05$), and significantly up-regulate the expression of Bax (at the concentrations of $10,20,40 \mu \mathrm{M}, p<0.05$), in a concentration-dependent manner (Fig 5). In addition, the ratio of $\mathrm{Bax} / \mathrm{Bcl}-2$ also increased after treatment with PA.

Fig 5: Effect of PA on Bcl-2 and Bax expressions in SGC-7901 cells. Cells were treated with PA at the concentrations of 10,20 , and $40 \mu \mathrm{M}$ for 48 h , and the whole cell lysates were determined by western blot analysis using antibodies for $\mathrm{Bcl}-2$ and Bax as indicated

DISCUSSION

In this paper, we investigated the in vitro antitumor activity of PA in SGC-7901 cells, and this is the first report of the related research to our knowledge. In addition, we made an attempt to support mitochondria-mediated intrinsic apoptosis as one of the major apoptotic pathways in SGC-7901 cells.

Apoptosis is a cell-intrinsic programmed suicide mechanism for damaged cells and mitochondriamediated intrinsic apoptosis is one of the major apoptotic pathways of apoptosis $[8,11]$. Caspase proteins play pivotal roles in initiation and execution of apoptosis. Caspase-3 is one of the effectors in initiation of apoptosis and caspase-3 can be commonly activated by caspase-9 [12,13]. The B-cell lymphoma/leukemia-2(Bcl-2) family can significantly regulate apoptosis as an activator or as an inhibitor. Bax is a well-known pro-apoptotic protein and $\mathrm{Bcl}-2$ is an antiapoptotic protein of Bcl-2 family, so the Bax/Bcl-2 ratio is a key factor in apoptotic regulation process. The mitochondria-mediated apoptotic cell death pathway can be activated when the ratio of Bax/Bcl-2 increase [14-16].

In our present study, the caspase-3, caspase-9 proteins and Bax were significantly up-regulated ($p<0.05$), Bcl-2 was significantly down-regulated ($p<0.05$) by treatment with PA, in a concentration-dependent manner. Therefore, this indicates that the possible mechanism of antitumor activity may be related to apoptosis induced by PA via a mitochondria-mediated apoptosis pathway. More investigations are necessary to elucidate the complete mechanism of apoptosis induced by PA.

CONCLUSION

PA has significant antitumor activity on gastric cancer cell lines, and the possible mechanism of action may be related to apoptosis induced by PA via mitochondria-mediated apoptosis pathway. PA is an interesting apoptosis inducer with a potential to be developed into a therapeutic agent for gastric cancer. However, more investigations are necessary to elucidate its complete mechanism(s) of action.

REFERENCES

1. Yang W, Raufi A, Klempner SJ. Targeted therapy for gastric cancer: Molecular pathways and ongoing investigations. Biochim Biophys Acta 2014; 1846(1): 232-237.
2. Kang J, Zhao G, Lin T, Tang S, Xu G, Hu S, Bi Q, Guo C, Sun L, Han S, Xu Q, Nie Y, Wang B, Liang S, Ding J, Wu K. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett 2013; 339(2): 247-259.
3. Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 2008; 65(20): 3145-3167.
4. Zhang D1, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol 2010; 6(4): 527-537.
5. Song W, Tang Z, Li M, Lv S, Sun H, Deng M, Liu H, Chen X. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater 2014; 10(3): 1392-1402.
6. Su JY, Tan LR, Lai P, Liang HC, Qin Z, Ye MR, Lai XP, Su ZR. Experimental study on anti-inflammatory activity of a TCM recipe consisting of the supercritical fluid CO2 extract of Chrysanthemum indicum, Patchouli Oil and Zedoary Turmeric Oil in vivo. J Ethnopharmacol 2012; 141(2): 608-614.
7. Peng W, Ming QL, Han P, Zhang QY, Jiang YP, Zheng CJ, Han T, Qin LP. Anti-allergic rhinitis effect of caffeoylxanthiazonoside isolated from fruits of Xanthium strumarium L. in rodent animals. Phytomedicine 2014; 21: 824-829.
8. Yang T, Kong B, Gu JW, Kuang YQ, Cheng L, Yang WT, Cheng JM, Ma Y, Yang XK. Anticonvulsant and sedative effects of Paederosidic Acid isolated from Paederia scandens (Lour.) Merrill. in mice and rats. Pharmacol Biochem Behav 2013; 111: 97-101.
9. Chen YF, Huang Y, Tang WZ, Qin LP, Zheng HC. Antinociceptive activity of Paederosidic Acid Methyl Ester (PAME) from the n-butanol fraction of Paederia scandens in mice. Pharmacol Biochem Behav 2009; 93(2): 97-104.
10. Quang DN, Hashimoto T, Tanaka M, Dung NX, Asakawa Y. Iridoid glucosides from roots of Vietnamese Paederia scandens. Phytochemistry 2002; 60(5): 505-514.
11. Narender T, Sukanya P, Sharma K, Bathula $S R$. Preparation of novel antiproliferative emodin derivatives and studies on their cell cycle arrest, caspase dependent apoptosis and DNA binding interaction. Phytomedicine 2013; 20(10): 890-896.
12. Lin CH, Chen PS, Kuo SC, Huang LJ, Gean PW, Chiu TH. The role of mitochondria-mediated intrinsic death pathway in gingerdione derivative 16-induced neuronal apoptosis. Food Chem Toxicol 2012; 50(34): 1073-1081.
13. Ding L, Xu X, Huang Y, Li Z, Zhang K, Chen G, Yu G, Wang Z, Li W, Tong D. Transmissible gastroenteritis virus infection induces apoptosis through FasL- and mitochondria-mediated pathways. Vet Microbiol 2012; 158(1-2): 12-22.
14. Wu Z, Sun H, Li J, Ma C, Zhao S, Guo Z, Lin Y, Lin Y, Liu L. A polysaccharide from Sanguisorbae radix induces caspase-dependent apoptosis in human leukemia HL-60 cells. Int J Biol Macromol 2014; 70: 615-620.
15. Teng BS, Lu YH, Wang ZT, Tao XY, Wei DZ. In vitro antitumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol Res 2006; 54(3): 186-194.
16. Xin J, Zhan Y, Liu M, Hu H, Xia L, Nie Y, Wu K, Liang J, Tian J. ApoG2 induces ER stress-dependent apoptosis in gastric cancer cells in vitro and its real-
time evaluation by bioluminescence imaging in vivo. Cancer Lett 2013; 336(2): 260-269.
