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Abstract 

Purpose: To develop a simple and cost effective spectrophotometric method for the determination of 
etilefrine hydrochloride (ET) in pharmaceutical formulations and human plasma. 
Methods: The method is based on extraction of ET into chloroform as ion-pair complexes with 
bromocresol green (BCG) and methyl orange (MO) in acidic medium.  The interaction of ET with BCG 
and MO reagents were investigated using B3LYP/6-31G(d) level of theory.  The geometrical parameters 
of the interacting species and the ion pairs formed were characterized based on their frontier molecular 
orbitals, atomic charges, electrostatic potential map, as well as NBO analysis.   
Results: The colored species exhibited absorption maxima at 410 and 479 nm for the two systems in 
universal buffer of pH range (3.0 - 3.5), with molar absorptivity of 2.4 × 104 and 1.7 × 104 Lmol-1cm-1, for 
BCG and MO methods, respectively. The methods demonstrated good linearity with correlation 
coefficient ranging from 0.9987 – 0.9991 in the concentration ranges 0.5 – 16 and 2.0 – 18 µgmL-1 for 
BCG and MO methods, respectively. The composition ratio of the ion-association complexes was 1:1 in 
all cases as established by Job’s method. Sandell,s sensitivity, correlation coefficient, detection and 
quantification limits were also calculated.  Molecular descriptors were obtained based on optimized 
structures of the molecules under investigation, by applying the B3LYP/6-31G(d) method, and used to 
interpret the mode of interaction between these molecules to form the investigated ion pairs. 
Conclusion: The proposed methods make use of simple reagents, which a basic analytical laboratory 
can afford. No interference was observed from common pharmaceutical excipients and additives.  ET-
MO ion pair has a larger interaction energy (higher stability) than ET-BCG ion pair as inferred from their 
interaction energies.   
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INTRODUCTION 
 
Etilefrine hydrochloride, 2-ethylamino-l-(3-
hydroxyphenyl) ethanol hydrochloride, is an 
amine that is known with its sympathomimetic 
activity has been utilized for a long time as a part 
of the treatment of orthostatic issue [1]. It shows 

a significant first-pass metabolic process going 
through the gut wall and found to show inter-
individual variety in bioavailability [2]. It is utilized 
as anti-hypotensive medication, in the 
counteractive action of vasovagal syncope, and 
in the prohibition of sickle cell infection induced 
priapism [3,4].  
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Etilefrine has been detected by a couple of 
systematic techniques including 
spectrophotometry [5], differential derivative 
spectrophotometry [6], flow injection 
chemiluminescence [7], potentiometry [8] in 
addition to 1HNMR spectroscopy [9]. Gas 
chromatography with mass spectrometry [10,11] 
in addition to fluid scintillation counting of the 
radioactively labeled drug technique [12], have 
been the primary strategies used to detect 
etilefrine in plasma and urine in pharmacokinetic 
studies. The high performance liquid 
chromatographic (HPLC) strategies are precise 
and specific. Nowadays, HPLC combined with 
electrochemical location has been generally 
utilized for the determination of drug compound 
in biological samples, as a result of its improved 
selectivity and affectability [13,14]. A systematic 
approach must be undertaken and knowledge on 
the reactivity and stability of interacting system is 
essential in order to help in the explanation of the 
experimental findings. Recently, DFT as 
quantum chemical calculation provides an 
alternative to achieve this objective [14-18].  
Instead, only the structure of the species 
involved is required as an input to the calculation. 
In this work, the interactions of ET with BCG and 
MO were investigated based on quantum 
chemical calculations. This was done by 
determining the HOMO/LUMO energy values 
and energy gap, global reactivity indexes, 
interaction energies, atomic charges of the 
species and its ion pairs in addition to NBO 
analysis.      
 
The aim of the present work was to develop a 
simple, reliable and accurate extractive 
spectrophotometric method for the determination 
of ET in pure form and in the pharmaceutical 
preparations available in Egyptian markets.  In 
addition to that, the mode of interaction between 
the molecules forming the ion pair by theoretical 
studies. 
 
EXPERIMENTAL 
 
Reagents and solutions 
 
Etilefrine hydrochloride was kindly donated by 
pharma company, El-Obour City Egypt. All of the 
chemicals used were of analytical or 
pharmaceuticalgrade and all solutions were 
prepared in doubly distilled water without further 
purification. Dissolving 10 mg of pure drug in a 
few drops of ethanol then transferring it into a 
100 mL measuring flask, and diluting it with 
distilled water up to the marking for preparation a 
stock solution of ET (100 µg mL-1).  
 
 

Apparatus 
 
Spectrophotometric measurements had been 
done using a UV-visible spectrophotometer 
model JASCO530 UV-Vis with quartz cells (path 
length 10 mm). The pH-meter, model HI 8014, 
HANNA Instruments (Italy) were used to 
measure pH values. 

 
Procedure for calibration curve 
 
Aliquots of (ET) were transferred into a 10 series 
of 50 mL separating funnels as the concentration 
range stated in Table 1. A 1.0 mL of dye solution 
(1.0 × 10-3M) and 5.0 mL of buffer solutions of 
(pH 2 - 10) were added then completed the 
volume of the aqueous phase to 10 mL with 
distilled water and then shaking vigorously was 
done for 2 min, after added 10 mL of chloroform 
to funnels. For clear separation, the two phases 
should be allowed to stand and the organiclayer 
was dried using anhydrous sodium sulfate. The 
absorbance of the organic phase (chloroform) 
was determined at 410 and 479 nm for BCG and 
MO, respectively using chloroform as a blank 
solution. The calibration curves showed the 
linearity over the concentration ranges 0.5 - 16 
and 2.0 - 18 µg mL-1 for BCG and MO, 
respectively, Table 1. 
 
Table 1: Quantitative parameters for determination of 
etilefrine 
 
      Parameter Etilefrine 

BCG MO 
pH 3.0 3.5 
Extracting solvent chloroform chloroform
λmax 410 479 
Molar ratio (Drug-HCl : Dye) 1 : 1 1 : 1 
Beer’s law limits (µg mL-1) 0.5 – 16 2.0 – 18 
Molar absorptivity (L mol-1cm-

1) 2.4 × 104 1.7 × 104

Sandell’s sensitivity (ng cm-2) 9.0 13 
Range of error % 0.44 : 0.68 0.55 : 0.71
Regression equation*   

Intercept 0.01 0.04 
Slope 0.112 0.077 
Correlation coefficient (r) 0.9998 0.9996 
t-value (2.56)** 1.29 1.42 
F- value (5.05)** 

LOD (µg mL-1) 

LOQ  (µg mL-1)    
pK 

2.87 
0.1 
0.3 

5.16 

2.49 
0.6 

         1.8 
        5.68 

*A = a + bC, where C is the concentration in g mL-1; 
**values in parentheses are the theoretical values for 
t- and F- values at 95 % confidence limits and five 
degrees of freedom 
 
Stoichiometric relationship 
 
Continuous variation was employed using Job’s 
method; 5.0 × 10-4M solution of BCG and MO 
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solution were used. Different solutions were 
prepared where the total volume of investigated 
drug and reagent was kept constant at 2 mL. 
The reagents were mixed in various proportions 
and completed to 10 mL mark with distilled 
water, following the above mentioned 
procedures. 
 
Assay procedure for tablets 
 
Ten tablets of Effortil or Vascon (5 mg/tablet) 
weight crushed and then turn them into powder. 
The weight amount equal to 5 mg powder of ET 

was transferred to a 100 mL measuring flask 
containing about 50 mL of distilled water. The 
suspended solution was shaken thoroughly for 
about 10 min., and then filtered through a 
Whatman filter paper no. 40 to remove insoluble 
constituents. The separating filtrate was diluted 
with distilled water to the mark. The described 
procedure was applied for the quantification of 
ET concentration using blank solution, which was 
prepared in the same manner without the 
investigated drug. A standard additions method 
was also applied to confirm the precisions and 
accuracy. 

 
 
Assay procedure for etilefrine in human 
plasma 
 
Samples human plasma were collected in EDTA 
sample tubes from healthy drug-free volunteers 
then were spiked with etilefrine. The samples 
were vortexed and centrifuged at 1500 rpm for 
10 min to separate the plasma components. 
One milliliter of plasma samples were 
transferred to a clean sample tube and 1.0 mL of 
(100 µg mL-1) of standard etilefrine solution was 
added. The blank prepared in the same manner 
without the investigated drug then it was used 
according to the general procedure described 
above for the quantification of etilefrine 
concentration. 
 
Computational methodology 
 
Computational analyses (Density Functional 
Theory calculations, DFT) were performed using 
the GAUSSIAN 03 suite of programs [19].  
Geometry optimizations of the compounds under 
investigation were conducted applying the 
Becke, three-parameter, Lee–Yang–Parr 
(B3LYP)/6-31G(d) method without any 
symmetry constraint. No imaginary frequencies 
were found at the same level of theory to 
confirm that the geometries of ion pairs were 
local minima.  The interaction energies of the 
ion-pair formation (ΔE) under investigation were 
estimated using the relation in Eq 1. 
 
ΔE kcal/mol =   627.5 {EDR (au) – (ED +ER) (au)} .. (1) 
 
where ΔE is the energy (in atomic units (au)) of 
the ion-pair formation and EDR, ED, ER are the 
energy of ion pair, drug and reagent, 
respectively. 
 
RESULTS 
 
Extractive spectrophotometric procedures show 
widely used due to their sensitivity in the assay 
of drugs and the quantitative determination of 

many pharmaceutical compounds [20-23]. 
Anionic dyes like (BCG and MO) form ion-
association complexes with the positively 
charged drug. The two oppositely charged ions 
(drug-dye complex) behave as a single unit, 
which were attracted together by an electrostatic 
force. 
 
Optimized reaction conditions 
 
The extraction and formation process of the 
coloured compounds of ET with BCG and MO 
based on pH value of the solutions, 
concentration of reagents and the polarity of 
organic solvent used. The positively charged 
drug formed ion-association complexes in acidic 
buffer solution with anionic dyes such as (BCG) 
and (MO) and these complexes were extracted 
quantitatively into chloroform. A maximum 
absorption values of the extracted ion-pair 
complexes appeared at 410 and 479 nm for 
BCG and MO, respectively, as shown in Figure 
1. No absorption appeared for the reagent blank 
under similar conditions. 
 
Effect of pH and buffer media 
 
The type and pH of buffer used play important 
role for the extraction of the investigated 
complexes. 

 
Figure 1: Absorption spectra of ET-BCG and ET-MO 
ion-pair complexes formed with 10 µg mL-1 ET 
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Figure 2: Effect of pH on the absorbance of ion-pair 
complexes formed with10 µg mL-1 ET: a) ET-BCG and 
b) ET-MO ion-pairs complexes 
 
Different buffers such as (KHPh – HCl, pH = 
2.22 - 3.58) , (NaOAc - HCl, pH = 2.05 - 4.82), 
(NaOAc – AcOH, pH = 3.65 - 5.50), and (B-R 
buffer, pH = 2.0 - 10) were used to study the 
effect of pH for extracting the coloured 
complexes. The maximum absorbance was 
observed in B-R buffer solutions of acidic values 
(Figure 2 and Table 1). The optimum amount of 
buffer solution used to give constant absorbance 
was also studied and found to be 5.0 mL. 
 
Effect of dye concentration 
 
The effect of dyes concentration on the 
absorbance measurements of the colour 
developed at optimum wavelengths was tested 
using different  milliliters of 5 × 10-4 M of the 
dyes. It is apparent from Figure 3, that the 
maximum absorbance in each case, was found 
with (1.4 mL) of dyestuff, beyond which 
absorbance was constant. Thus (2.0 mL) of 
each dyestuff was used for ion-pair complexes 
formation during the experiment 
. 

 
Figure 3: Effect of concentration of the acid dye as 
mL added of 1 x 10-3 M BCG and MO on the reaction 
with 10 µg mL-1 ET: a) ET-BCG and b) ET-MO ion-
pairs complexes 
 
Selected extracting solvents 
 
Several organic solvents  were  tested for effec- 

tive extraction of the coloured products such as 
chloroform, dichloromethane, carbon tetra-
chloride, benzene, and toluene. Maximum 
absorbance intensities were observed using 
chloroform which was found to be the most 
suitable solvent for extraction for all complexes. 
 
Effect of time and temperature 
 
Shaking time of 1.0 - 4.0 min appeared constant 
absorbance and thus a shaking time of (2.0 min) 
was preserved during the study to reach 
equilibrium between both phases. The ratio of 
aqueous to organic phase was tested and was 
found not effective and the ratio 1:1 was chosen 
for extraction of coloured species. 
 
The effect of temperature on the coloured 
complexes was examined at different 
temperatures (20, 25, 30, 35 and 40 ºC). It was 
found that the coloured species were stable up 
to 40 ºC. At higher temperatures, increase in 
drug concentrations was observed due to 
volatile nature of the organic solvent, which 
leads to an increase in the absorbance of the 
products. The coloured species were stable for 
at least 6 h at 25 ºC. 
 
Composition of ion-pair complexes 
 
The drug-reagent stoichiometric ratio was found 
to be 1:1 with BCG and MO as detected by 
Job’s (Figure 4) method. The extraction 
equilibrium can be represented as in Eq 2. 
 
ETH+

(aq.) + R-
(aq.)  ETH+.R-

(aq.)  

ETH+.R-
(org.) …. (2) 

 
where ETH+ and R- represent the protonated 
etilefrine and the anion of the reagent, 
respectively. The subscript (org.) and (aq.) refer 
to the organic and aqueous phases. The 
proposed methods used to calculate the 
stoichiometric ratio of the complexes could be 
used also for the quantification of their stability 
constant in solution. The values of the stability 
constant obtained by spectrophotometric 
methods showed that the complex of with MO 
was more stable than BCG reagent (Table 1) 
which agrees with data obtained by theoretical 
study. 
 
Analytical performance characteristics 
 
The Beer-Lambert law limits, Sandell’s 
sensitivity, molar absorptivity, correlation 
coefficients and regression equations provided 
by linear square treatment of the results are 
given in Table 1. Three variant concentrations of 
ET were prepared and analyzed in six 
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measurements and gave satisfactory results to 
determine the precision and accuracy of the two 
systems. Subsequently, the ion-pair formations 
were utilized successfully for their quantification. 
Percentage relative error (RE %) as accuracy 
and percentage relative standard deviation 
(RSD %) as precision of the proposed methods 

were calculated (Table 2). These results of 
accuracy and precision appeared that the 
investigated methods have good reproducibility 
and repeatability. The recoveries and percent 
relative standard deviation (RSD %) were found 
to differ over acceptable ranges (Table 2). 

 

 
Figure 4: Continuous variation plots for the ion-pair complexes of 10 µgmL-1ET: a) ET-BCG and b) ET-MO ion-
pairs complexes 
 
Table 2: Evaluation of accuracy and precision for the proposed methods 
 

Procedure Taken 
(µgmL-1) 

Recovery* 
(%) 

RSD 
(%) 

RE 
(%) 

BCG 
10.0 
12.0 
14.0 

99.76 
99.49 
99.88 

0.168 
0.178 
0.126 

0.44 
0.68 
0.52 

MO 
10.0 
12.0 
14.0 

101.04 
99.24 
99.88 

0.107 
0.104 
0.116 

0.55 
0.71 
0.62 

*Average of six determinations 
 
LOD and LOQ [22] are defined as the lowest 
amount of detection and that can be accurately 
quantified (Table 1), respectively. LOD and LOQ 
were calculated using Eqs 3 and 4. 
 

 …………… (3) 
 

 …………………… (4) 
 
where SD is the standard deviation of the blank 
and S is the slope of the standard curve. 
 
Interference  
 
The influence of common excipients and other 
additives were examined for possible 
interferences during determination. It was 
observed that glucose, talc, sulfate, starch, 
acetate, phosphate, dextrose, and magnesium 
stearate did not interfere with the quantification at 
the concentrations found in pharmaceutical 
formulations. However, the drug contents were 

extracted from the drug formulations into 
chloroform. 
 
Analytical applications 
 
The proposed method was validated for the 
analysis of ET in tablets and plasma by analyzing 
the sample using the proposed method which 
has been successfully applied to the 
determination of ET in dosage forms. The data 
obtained by the investigated methods were 
compared by official method (Table 3). The 
standard addition method was used to check the 
recovery and reliability of the proposed methods, 
since the complexes formation were stable for at 
least 24 h. The good recoveries refer to that the 
excipients in dosage forms of ET such as talc, 
starch, glucose, lactose, sulfate, dextrose, 
acetate, phosphate, and magnesium stearate 
were not appeared any exhibits, and any 
interference during the analysis of investigated 
drug. 
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It is important to monitor etilefrine plasma level in 
clinical studies due to possible toxicity and its 
linear elimination pharmacokinetics or 
inadequate dose after a long treatment. The 
ability of the proposed method has been 
estimated through spiking plasma samples with 
ET at varies concentration levels to determine 
etilefrine in plasma. It was found that etilefrine 
could be evaluated with good recoveries (Table 
4) at the levels of 8.0 – 14 µg mL-1 in plasma, 

thus indicating that there is no interference from 
excipients. 
 
The results observed for the investigated 
methods were compared with those obtained 
using the official method [23]. The calculated F-
values and Student’s t-values did not exceed the 
theoretical values at 95 % confidence level [22]. 
Therefore, there is no significant difference 
between the proposed and official methods.  
 

Table 3: Determination of etilefrine in its formulations using the proposed and official methods (European 
Pharmacopoeia, monograph 1205, 2012). 
 

Sample  
Method 

Manifested 
by 

Taken 
(g mL-1) 

Added 
(gmL-1) 

Found* Recovery 
% 

S.D. 
% Official Proposed 

Vascon® 
5 mg/tablet 

BCG 

Pharma** 

3.0  2.98 2.91 97.00 0.95 
  3.0 6.02 5.96 99.33 0.82 
  6.0 8.97 8.95 99.44 1.28 
  9.0 12.03 12.07 100.60 1.12 

         
 MO  3.5  3.46 3.41 97.40 0.73 
    3.5 6.95 7.02 100.28 0.85 
    7.0 10.43 10.47 99.71 0.76 
    10.5 14.05 13.96 99.71 0.58 
        

*Mean of six determinations; ** El-Obour City, Egypt 
 

Table 4: Precision and recovery of etilefrine in spiked human plasma 
 

Added 
(µg/mL) 

Recovery (%)*      RSD (%) 
  ET-BCG ET-MO ET-BCG ET-MO 

8.0 
10.0 
12.0 
14.0 

         91.2 
         89.5 
         90.8 
         94.3 

       78.6 
       77.7 
       87.6 
       91.5 

         1.2 
         0.5 
         0.3 
         0.1 

         1.1 
         0.9 
         0.7 
         0.2 

*Mean of five measurements 
 
DISCUSSION 
 
Figure 5 and Figure 6 show the optimized 
geometries of the drug, reagents and the ion 
pairs formed as calculated in our study along 
with their atom numbering. The structural 
analysis reveals the presence of intermolecular 
hydrogen bond interactions in the ion pairs 
formed between ET and BCG and MO expressed 
in the (NH…..O). 
 

The structural parameters, global minimum 
energy, dipole moments as well as the 
interaction energies obtained for the optimized 
geometry of all interacting species as well as the 
ion pairs formed as obtained from the B3LYP/6-
31G(d) basis sets are presented in Table 5. The 
ET-MO ion pair is found to have larger interaction 
energy (higher stability) than the ET-BCG ion 
pair as inferred from their interaction energy 
values as indicated in Table 5. 
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Figure 5: The optimized structures of the 1:1 ion pair of ET with BCG and their HOMO and LUMO orbitals by the 
B3LYP/6-31G(d) 
 

 
Figure 6: The optimized structures of the 1:1 ion pair of ET with MO and their HOMO and LUMO orbitals by the 
B3LYP/6-31G(d) approach 
 
As inferred from Table 5, the changes in the 
geometrical parameters of the interacting species 
upon the ion pair formation is related to the 
active sites involved in the interaction. The most 
significantly changed are the bonds involved in 
the hydrogen bonding. For the ET drug, the 
bonds involved in the hydrogen bonding are 
N10H22, N10H29 (with BCG) and O11H23 (with 
MO). The calculated changes of the bonds show 
that, as a result of the hydrogen bonding, the 
bonds N10H22 (with BCG), O11H23 (with MO) 
become longer. The lengthening of the bonds 

depends on the strength of the corresponding 
hydrogen bonds.  Concerning the SO3 group in 
BCG reagent which is also involved during the 
hydrogen bonding interaction in the ion pair 
formation, the r(S14-O15) and r(S14-O42) bonds 
showed lengthening whereas the bond r(S14-
O43) showed bond shortening (Table 5a).  The 
same behavior observed for the S-O bonds in the 
SO3 group in the methyl orange (Table 5). 
 
The hydrogen bonds in the ET-BCG found to be 
rN9-H22…O15 (1.673Ǻ) and rN9- H29…O44
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 Table 5: Selected structural parameters of the different drug reagents and the two ion pairs 
 
 Structural 
Parameters (ET)  (BCG) (MO) (ET-BCG) (ET-MO)  

Bond lengths (rÅ), bond angles (deg), dihedral angles (τ, deg)   
r(9-10)         1.518   1.491 1.506 
r(10-12)        1.515   1.505 1.494 
r(10-22)        1.025   1.062 1.079 
r(10-29)        1.034   1.035 1.035 
rN10-H22…O15    1.681  
rN10-H29…O42    2.048  
<(9-10-22)      110.0   110.8 107.4 
< (9-10-29)      104.4   109.9 104.3 
< (12-10-22)     108.9   108.4 110.3 
< (12-10-29)     109.2   107.4 112.0 
< (22-10-29)     107.5   100.4 104.2 
τ22-10-12-9 -125.0   -127.2 -123.6 
τ 29-10-12-9 117.9   125.1 120.8 
r(13-14)         1.843  1.812  
r(14-15)         1.490  1.520  
r(14-42)         1.482  1.496  
r(14-43)         1.485  1.476  
< (13-14-15)      103.9  104.5  
< (13-14-42)      103.5  105.7  
< (13-14-43)      104.1  108.3  
< (15-14-42)      114.6  110.1  
< (15-14-43)      114.2  113.4  
< (42-14-43)      114.7  114.1  
τ (15-14-13-12)  136.8  136.8  
τ (42-14-13-12)  16.8  20.7  
τ (43-14-13-12)  -103.4  -101.9  
r(15-18)          1.823  1.794 
r(18-19)          1.486  1.472 
r(18-20)          1.487  1.506 
r(18-21)          1.487  1.520 
rO11-C8     1.421 
rO11-H23…O49     1.796 
rN10-H22…O50     1.569 

TBond angles (deg), dihedral angles (τ, deg), and interaction energies ΔEinteraction (kcal/mol) 

< O8-C11-H23     109.2 
< (15-18-19)       103.9  108.8 
< (15-18-20)       103.2  105.2 
< (15-18-21)       103.6  104.3 
< (19-18-20)       114.6  114.3 
< (19-18-21)       115.0  113.2 
< (20-18-21)       114.4  110.2 
τ 48-47-44-43   155.9  -90.1 
τ 49-47-44-43   -84.3  32.7 
τ 50-47-44-43   35.4  148.8 

Energy -
595.6655281 

-
11869.186431 -1330.001024 -

12464.998024 -1925.834876 

Dipole moment 
μ(debye) 8.8362 15.1863 15.5170 13.0903 7.2509 

ΔEimteraction 
Kcal/mol    -91.654 -105.623 

 
(2.048 Ǻ) with the rN9-H22…O15 to be the 
strongest (Table 5).  The values for theses 
hydrogen bonds shorter and coincide with the 
van der Waals distance of reported hydrogen 
bonded O…H [24].  For the ET-MO ion pair 
(Figure 6), the hydrogen bonds  rO11-H23…O49 
and  rN10-H22…O50  were found to be  with a 

bond length values equal to 1.796 Ǻ and 1.569 Ǻ 
respectively. 
 
These values show a strong hydrogen bonding 
compared to that of the ET-BCG ion pair.  This is 
in agreement with the interaction energies 
obtained for the two ion pairs [24]. 
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Table 6: Atomic charge for the interacting atomic sites 
 
 Atom ET BCG ET-BCG MO ET-MO 
N10 -0.620  -0.650  -0.657 
H22 0.463  0.486  0.487 
H29 0.484  0.494  0.463 
C12 -0.262  -0.272  -0.260 
S14  2.448 2.425   
O15  -1.015 -1.040   
O42  -1.003 -1.030   
O43  -1.010 -0.975   
C13  -0.274 -0.279   
S18    2.440 2.438 
O19    -1.026 -0.961 
O20    -1.007 -1.056 
O21    -1.023 -1.034 
C15    -0.272 -0.310 
 
The changes in the angles with the ion pair 
formation were also estimated.  The results 
depicted in Table 5 show that the angles 
between the atoms involved  in the hydrogen 
bonding in the ET-BCG ion pair formation 
specially the (22-10-29) bond angle is showing ~ 
7 degrees change.  Some of the dihedral angles 
also of the atoms taking part in the ion pair 
formation show a change in their values such as 
τ (42-14-13-12) and τ (43-14-13-12) that  
deviates with a ~ 2- 4 degrees in the ion pair 
compared to the corresponding value in the drug.  
In the ET-MO ion pair some of the bond angles 
concerning the interactive atomic sites are 
showing the same trend, whereas the dihedral 
angles are showing a larger deviation (Table 5).  
The strength of the hydrogen bonding controls 
the changes in the angles.  The remaining 
geometrical parameters either changed with 
small values or stayed unchanged upon the 
formation of hydrogen bonds.  The large values 
of the dipole moment of the interacting species 
explain the electrostatic interaction between 
these species (Table 5). 
 
Atomic charge analysis 
 
The charge distribution on a molecule has a 
significant influence on the chemical reactivity 
and can be used to explain the differences in 
hydrogen bonding and electrostatic interaction 
[25,26]. The Full NBO atomic charges as 
obtained for the atoms at the interacting sites at 
B3LYP level using Gaussian03, with the 6-
31G(d) atomic basis set are depicted in Table 6.  
It is worthy to mention that, the nitrogen atom 
N10 atomic charge has been increased upon the 
interaction between ET and BCG reagent from -
0.620 up to -0.650 with an increase in the 
positive charge for the hydrogen atoms H22 and 
H29 from 0.463 and 0.484 to 0.486 and 0.494 
respectively. In the ET-BCG ion pair, two out of 
three oxygen atoms in the SO3 group show an 
increase in the charge upon ion pair formation 

whereas the third atom O44 shows a decrease in 
the charge from -1.005 to -0.977.  The same 
trend was found for the ET-MO ion pair (Table 6). 
 
HOMO/LUMO energy values and energy gap 
 
One of the main criteria when dealing with the 
interaction of molecular orbitals, is that the two 
orbitals that interact are generally the Highest 
Occupied Molecular Orbital (HOMO) of one 
molecule and the Lowest Unoccupied Molecular 
Orbital (LUMO) of another molecule. 
 
HOMO and LUMO are also known as frontier 
orbitals and they are essential in determining the 
amount of energy required to accept or lose 
electrons in a molecule.  HOMO is associated 
with the tendency of a species to donate electron 
and is characteristic for nucleophile components 
while LUMO is associated with the tendency to 
receive electrons, and is characteristic for 
electrophilic components.  Ionization potential (I) 
is defined as the ability of a ligand to donate 
precisely an electron to an acceptor while 
electron affinity (A) is defined as the ability of a 
ligand to accept precisely an electron from a 
donor.  HOMO energy is related to the ionization 
potential as approximated by Koopmans's 
theorem while LUMO energy is used to estimate 
the electron affinity [27]. 
 
As anions have the tendency to donate 
electrons, thus anions with lower HOMO energy 
values are better electron donors.  By careful 
inspection of Table 7, Figure 5 and Figure 6, one 
can decide that the species with low HOMO 
energy indicates high ionization potential of a 
species (better electron donor) while those with 
high LUMO energy indicate high electron affinity 
(better electron acceptor). Global reactivity 
indexes can be used to evaluate and predict the 
chemical reactivity and the selectivity of 
molecular systems for being electron donors or 
acceptors during molecular interaction. The 
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electronegativity which is defined as the ability to 
attract electrons by the molecule can be obtained 
as χ = − EHOMO−ELUMO /2 = I – A/2. A property 
that depends on the electronegativity is the 
chemical potential (μ) which is considered as the 
negative of the electronegativity. The HOMO–
LUMO energy gap can be determined and 
further, the important properties in quantum 
chemical calculation such as the hardness (η), 
softness (S), chemical potential (μ), 
electronegativity (χ) and electrophilicity index (ω) 
can be obtained. The hardness of a molecule (η) 
is related to the ELUMO-EHOMO energy gap by the 
following eq. (5): 
 

  ………… (5)  
Where the softness (S), calculated according to 
eq. (6): 
 

 …………. (6) 
 
(Where, (I) is the ionization potential and (A) is 
the electron affinity). 
 
The electophilicity index (ω) = μ2 /2η, that reflects 
the stability of the molecule when it accepts 
electrons from the surrounding. 
 
Careful inspection of Table 7 shows that, 
etilefrine molecule is going to accept electrons 
and the two reagents are going to be electron 
donors.  MO is going to be a better nucleophile 
than BCG, which is in good agreement with the 
interaction energies and the HOMO and LUMO 
Eigen values. 
 

The electrostatic potential surface (ESP) is an 
effective tool for predicting and analyzing non-
covalent interactions [28 - 30].  As can be seen in 
Figure 7, the high positively charged region in the 
etilefrine molecule is around the N10–H group 
whereas the highly negative regions are found to 
be around the oxygen atoms in the SO3 
sulphonate group.  This further supports the sites 
of interaction between the etilefrine molecule and 
the two reagents. 
 
NBO analyses 
 
Natural bond orbital (NBO) analysis was 
performed on ET-BCG and ET-MO ion pairs at 
the B3LYP level as implemented in the Gaussian 
program package. The most significant 
interactions between filled (donor) Lewis-type 
NBOs and empty (acceptor) non-Lewis NBOs for 
the two ion pairs ET-BCG and ET-MO are 
reported in Table 8 and Table 9 respectively. In 
addition, the stabilization energy associated with 
these bonds calculated by NBO analysis is also 
given. 
 
The stabilization energy E(2) associated with 
delocalization is estimated using the second 
order perturbation theory as in eq. (7): 
 

                   (7) 

 
where the donor orbital occupancy is denoted as 
qi, the diagonal elements, εi and εj, are the orbital 
energies, and Fij is the off-diagonal NBO Fock 
(Kohn–Sham matrix element) [31]. The large  

Table 7: Calculated EHOMO,  ELUMO, ΔE energy band gap (EL- EH), Ionization potential (I),  Electron affinity  (A), 
electronegativity (χ),  chemical potential (μ),  global hardness (η),  global softness (S) and global electrophilicity 
index (ω) for ET and the reagents as obtained from the B3LYP/6-31G(d) calculation 
 

Compound EH (ev) EL (ev) ΔEgab 
(ev) I A χ η S μ ω 

ET -9.0058 -3.5895 5.4163 9.0058 3.5895 6.2977 2.7081 0.3693 -6.2977 19.8615 
BCG -2.8997  -0.3108 2.5890 2.8997  0.3108 1.6052  1.2945 0.7725  -1.6052  2.1691  
MO -1.9579 0.5034 2.4613 1.9579 -0.5034 0.7272 1.2307 0.8126 -0.7272 1.8639 
ET-BCG -5. 6598 -2.6281 3.0317 5.6598  2.6281  4.1440 1.5158  0.6600 -4.1440 3.4831 
ET-MO -5.0715 -1.7669 3.3046 5.0715 1.7669 3.4192 1.6523 0.6052 -3.4192 4.5110 
 

 
Figure 7: Electrostatic potential surfaces for interacting molecules, A) Bromocresol Green, B) Etilefrine, C) 
Methyl orange.  Where the red and blue colours indicate regions of more negative and positive charges, 
respectively, and the isodensity contours are 0.02 electron/bohr. 
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Table 8: Second-order perturbation theory analysis of Fock matrix on NBO basis for ion pair (ET-BCG) by using 
the B3LYP method with the 6-31G(d) basis set 
 
Donor NBO (i) Acceptor NBO (j) E(2) kcal/mol E(j)-E(i)a.u. F(i,j)a.u. 
π(C1-C3) π*(C2-C6) 21.96 0.28 0.072 
π(C1-C3) π*(C4-C5) 17.04 0.29 0.063 
π(C2-C6) π*(C1-C3) 17.40 0.29 0.063 
π(C2-C6) π*(C4-C5) 23.15 0.29 0.073 
π(C4-C5) π*(C1-C3) 22.90 0.28 0.072 
π(C4-C5) π*(C2-C6) 17.13 0.28 0.062 
n2(O7) π*(C2-C6) 30.08 0.34 0.097 
n3(O44) σ*(N10-H22) 28.32 0.65 0.124 
π(C31-C32) π*(C30-O58) 19.20 0.31 0.071 
π(C31-C32) π*(C33-C36) 12.04 0.31 0.056 
π(C33-C36) π*(C31 - C32) 20.46 0.29 0.070 
π(C33-C36) π*(C34 - C35) 16.43 0.29 0.063 
π(C34-C35) π*(C30 –O58) 19.15 0.31 0.070 
π(C34-C35) π*(C33 - C36) 12.17 0.31 0.055 
π(C37-C38) π*(C39 - C40) 19.82 0.28 0.068 
π(C37-C38) π*(C41 - C42) 18.45 0.28 0.064 
π(C39-C40) π*(C37 - C38) 21.72 0.28 0.069 
π(C39-C40) π*(C41 - C42 21.85 0.28 0.070 
π(C41-C42) π*(C37 - C38) 20.11 0.28 0.068 
π(C41-C42) π*(C39 - C40) 18.58 0.29 0.065 
π(C45-C46) π*(C47 - C48) 17.85 0.25 0.061 
π(C45-C46) π*(C49 - C50) 24.42 0.27 0.073 
π (C47-C48) π*(C45 - C46) 23.90 0.31 0.078 
π (C47-C48) π*(C49 - C50) 13.41 0.30 0.058 
π (C49-C50) π*(C45 - C46) 14.07 0.29 0.058 
π (C49-C50) π*(C47 - C48) 25.24 0.27 0.076 
n2(O44) σ*(S43 - O73) 17.49 0.58 0.091 
n3(O44) σ*(C42 - S43) 12.69 0.47 0.069 
n2(O52) π*(C47 - C48) 35.35 0.33 0.104 
n2(O58) π*(C30 - C31) 21.03 0.69 0.109 
n2(O58) π*(C30 - C35) 21.76 0.68 0.110 
n2 (O71) σ*(S43-O44) 10.47 0.52 0.067 
n2 (O71) σ*(S43-O73) 18.57 0.57 0.092 
n3 (O71) σ*(C42-S43) 16.88 0.44 0.078 
n2 (O72) σ*(S43-O44) 11.91 0.50 0.069 
n2(O72) σ*(S43-O72) 21.52 0.53 0.096 
n3 (O72) σ*(C42-S43) 18.59 0.42 0.080 
n3 (O72) σ*(S43-O44) 12.03 0.51 0.070 
 
E(2) value indicates the more strong interaction 
between the electron donors and electron 
acceptors.  Relatively high stabilization energies 
of the π → π* as seen in Table 8 and Table 9 for 
both ion pairs indicate strong delocalization of 
the π electrons which leads to stabilization of the 
molecule. Concerning the ET-BCG ion pair, 
Table 8, the maximum values were shown as 
π(C33-C36) → π*(C31 – C32),π(C45-C46) → 
π*(C49 - C50)  and π (C45-C46) → π*(C47 - 
C48) with a stabilizing values of 20.46,  24.42 
and 25.24  kcal/mol respectively.  The hyper 
conjugative interaction concerning the interaction 
between the lone pairs n2(O7), n3(O44), 
n2(O52), n2(O58)  and n2(O58) to the 
antibonding  orbitals π*(C2-C6),  σ*(N10-H22), 
π*(C47-C48), π*(C30-C31) and π*(C30-C35)  
respectively.  These interactions show stabilizing 
energies of 30.08, 28.32, 35.35, 21.03 and 21.76 
kcal/mol, respectively.  The n3(O44)→ σ*(N10-
H22) with a large stabilization energies indicating 

a strong hydrogen bond which leads to 
weakness of the bond N10-H22.  This accounts 
to its increase in the ion pair ET-BCG (Table 5). 
 
Concerning  the ET-MO ion pair, the  interactions 
between the π(C1–C3)→π*(C2-C6), π(C4-
C5)→π*(C1-C3), π(C34-C35)→π*(N39-N40) 
and π(C31-C36)→π*(C34-C35) shows the 
maximum stabilization energies with the values 
of  22.49, 22.66, 23.77 and 25.89 kcal/mol 
respectively (Table 9).  These high stabilization 
energies accounts for the high stability of the 
molecule.  A hyper conjugative interaction was 
observed from the lone pair of N30 and O7 to the 
antibonding orbitals of (C31-C36) and (C2-C6) 
respectively and stabilizing these rings with 
stabilizing energy values of 46.27 and 28.81 
kcal/mol respectively.  The conjugation of lone 
pair of n3(O49) with σ*(O11-H23) was also 
observed (12.42 kcal/mol). This interaction  
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Table 9: Second-order perturbation theory analysis of Fock matrix on NBO basis for ion pair (ET-MO) by using 
the B3LYP method with the 6-31G(d) basis set 
 
Donor NBO (i) Acceptor NBO (j) E(2) kcal/mol E(j)-E(i)a.u. F(i,j)a.u. 
π(C1–C3) π*(C2-C6) 22.49 0.28 0.072 
π(C1-C3) π*(C4-C5) 16.79 0.29 0.063 
π(C2-C6) π*(C1-C3) 16.75 0.30 0.063 
π(C2-C6) π*(C4-C5) 21.68 0.30 0.072 
π(C4-C5) π*(C1-C3) 22.66 0.28 0.072 
π(C4-C5) π*(C2-C6) 17.93 0.27 0.063 
n2(O7) π*(C2-C6) 28.81 0.35 0.096 
n3(O49) σ*(O11-H23) 12.42 0.71 0.086 
π(C31-C36) π*(C32-C33) 13.84 0.29 0.058 
π(C31-C36) π*(C34-C35) 25.89 0.29 0.077 
π(C32-C33) π*(C31-C36) 20.72 0.27 0.070 
π(C32-C33) π*(C34-C35) 14.52 0.29 0.060 
π(C34-C35) π*(C31-C36) 17.47 0.26 0.061 
π(C34-C35) π*(C32-C33) 21.89 0.28 0.072 
π(C34-C35) π*(N39-N40) 23.77 0.23 0.069 
π(N39-N40) π*(C34-C35) 10.41 0.39 0.062 
π(N39-N40) π*(C41-C42) 11.38 0.39 0.064 
π(C41-C42) π*(N39-N40) 19.44 0.23 0.062 
π(C41-C42) π*(C43-C44) 22.43 0.27 0.070 
π(C41-C42) π*(C45-C46) 18.05 0.29 0.066 
π(C43-C44) π*(C41-C42) 18.48 0.29 0.066 
π(C43-C44) π*(C45- C46) 19.12 0.29 0.068 
π(C45-C46) π*(C41-C42) 20.04 0.28 0.068 
π(C45-C46) π*(C43-C44) 19.19 0.27 0.065 
n1 (N30) π*(C31-C36) 46.27 0.27 0.104 
n2 (O48) σ*(S47-O49) 16.32 0.52 0.082 
n2 (O48) σ*(S47-O50) 19.98 0.50 0.089 
n3 (O48) σ*(C44-S47) 19.55 0.44 0.083 
n2 (O49) σ*(S47-O48) 14.11 0.59 0.082 
n2 (O49) σ*(S47-O50) 14.20 0.52 0.078 
n3 (O49) σ*(C44-S47) 15.35 0.47 0.077 
n2 (O50) σ*(S47-O48) 16.40 0.59 0.089 
n3 (O50) σ*(C44-S47) 10.43 0.51 0.065 
 
accounts for the lengthening of the O11-H23 
bond upon the ion pair formation (Table 5). 
 
CONCLUSION 
 
The proposed methods make use of simple 
reagent, which a basic analytical laboratory can 
afford. The reagents utilized in the proposed 
methods are low cost, readily available and the 
proposed methods do not involve critical reaction 
conditions or tedious sample preparation. The 
methods are unaffected by slight variations in 
experimental conditions, such as pH, reagent 
concentration or temperature. 
 
The proposed methods are sufficiently sensitive 
to permit determination even down to 0.1 µg mL1. 
The sensitivity in terms of molar absorptivity and 
the precision in terms of RSD of the methods are 
very suitable for the determination of ET in 
tablets and biological fluids. Moreover, the 
methods are free from interference by common 
additives and excipients. The ET-MO ion pair 
found to have larger interaction energy (higher 

stability) than the ET-BCG ion pair as inferred 
from their interaction energies. 
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