Ethnomedicinal uses and pharmacological activities of Croton megalobotrys Müll Arg: A systematic review

Alfred Maroyi
Medicinal Plants and Economic Development (MPED) Research Center, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

*For correspondence: Email: amaroyi@ufh.ac.za; Tel: 0027406022322; Fax: 0027866177642

Sent for review: 9 March 2017 Revised accepted: 8 September 2017

Abstract

Purpose: To provide an overview of the ethnomedicinal uses and pharmacological activities of Croton megalobotrys as to understand its potential value and importance in primary health care systems of local communities throughout its distributional range.

Methods: The literature search for information on ethnomedicinal uses and pharmacological activities of C. megalobotrys was undertaken using databases such as Web of Science, BMC, Science Direct, Elsevier, Scopus, PubMed and Scielo. Other relevant literature sources included books, book chapters, websites, theses, conference papers and other scientific publications.

Results: Croton megalobotrys is an important herbal medicine in southern Africa used as an abortifacient and purgative, and as remedy for human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) opportunistic infections, malaria, muscle aches or pain, sexually transmitted infections (STIs) and skin infections. The chemical constituent of C. megalobotrys is mainly composed of alkaloids and cinnamate derivative isolated from the stem bark. The biological activities demonstrated include antibacterial, antiplasmodial, anti-HIV and radical scavenging activities.

Conclusion: The historical traditional usage of C. megalobotrys as herbal medicine in southern Africa calls for detailed phytochemical and pharmacological properties of the species aimed at identifying the compounds responsible for its wide usage as an herbal medicine.

Keywords: Alkaloids, Croton megalobotrys, Ethnopharmacology, Primary health, Southern Africa

INTRODUCTION

Medicinal plants play an important role in managing and treating human and animal diseases and ailments throughout the world. According to van Wyk et al [1], plants are an important primary source of most medicines in the world and they still continue to provide humans with new herbal medicines. It is within this context that the ethnomedicinal uses pharmacological activities of Croton megalobotrys Müll. Arg. were evaluated. Croton megalobotrys is a member of the Croton genus of the Euphorbiaceae family, comprising about 1300 species worldwide [2]. According to Salatino et al [2], several Croton species are widely used as traditional medicines in Africa, Asia and South America. Research by several authors [3-8] revealed that C. megalobotrys is an important medicinal plant used by both rural and urban communities throughout its native distributional range in tropical Africa. Croton megalobotrys is traded as medicinal plant in herbal medicine (muti) markets or shops in the Mpumalanga province in South Africa [9]. Research done by Tshisikhawhe et al [10] showed that harvesting of stem bark of C. megalobotrys...
for medicinal purposes may threaten the survival of the species in the Limpopo province in South Africa where the species is harvested from the wild as herbal medicine. Therefore, this review is aimed at assessing if there is correlation between the ethnomedicinal uses of C. megalobotrys and the documented phytochemical and pharmacological properties of the species. It is hoped that this ethnomedicinal and pharmacological information will highlight the value and importance of C. megalobotrys as a potential source of a wide range of pharmaceutical products in southern Africa and will provide useful information to other researchers interested in the plant species.

METHODS

The literature search for information on ethnopharmacology and therapeutic value of C. megalobotrys (i.e., its ethnomedicinal uses, including other traditional uses, its botany, distribution, phytochemistry and pharmacological properties of the species) was performed from September 2016 to March 2017. Publications from all years included in databases such as BMC, Elsevier, PubMed, Sciendo, Science Direct, Scopus and Web of Science were considered. Other literature sources were obtained from the library collections at the University of Fort Hare, Alice campus, South Africa, including scientific papers published in books, book chapters, international journals, theses, conference papers and other scientific publications. The keywords used in the search included "Croton megalobotrys", the synonym of the species "Croton gubouga S. Moore", and English names such as "fever bark", "fever bark tree", "fever-berry", "fever-berry croton", "large fever-berry" and "lowveld croton". All articles that appeared to meet the selection criteria were retrieved, and this review draws heavily on the research results published in international journals (33), books (13), websites (four), book chapters, dissertations and theses (three each), conference reports and scientific reports from international organizations (one each). Most of the ethnomedical uses data on C. megalobotrys have been collected from Zimbabwe, Zambia, South Africa, Namibia, Mozambique, Malawi and Botswana.

RESULTS

Botanical profile of Croton megalobotrys

The generic name “Croton” was derived from a Greek word “kroton” meaning thick, in reference to the thick and smooth seeds [11], a common feature of most Croton species which belong to the Crotonoideae subfamily of the Euphorbiaceae family [12-14]. The specific name “megalobotrys” was derived from Greek words meaning "big bunch of grapes" in reference to the big bunches of fruits, characteristic of the species [11,12,15,16]. The synonym of C. megalobotrys is C. gubouga S. Moore [12-16].

Croton megalobotrys has been recorded in Botswana, Zimbabwe, Zambia, Malawi, South Africa, Mozambique and Namibia (Figure 1). **Croton megalobotrys** is common in semi-deciduous savannah, at medium to low altitudes on alluvial soils and usually a constituent of riverine and swamp fringe forest or thicket [12-17].

Figure 1: Distribution of Croton megalobotrys in southern Africa

Vernacular names and traditional uses of Croton megalobotrys in southern Africa

There appear to be a direct correlation between the number of vernacular names and the traditional uses of C. megalobotrys in southern Africa (Figure 2). Literature search revealed that C. megalobotrys has no fewer than 62 vernacular names in southern Africa (Table 1), with South Africa having 21 vernacular names followed by Botswana with 20, Zimbabwe with eight and
Namibia with six vernacular names (Table 1). Botswana has the highest number of uses of *C. megalobotrys*, 20 in total (Table 2) followed by South Africa with nine, Zimbabwe with seven and Malawi with six uses (Table 2). These findings support an observation made by Maroyi [18] that plant species characterized by several vernacular names implies that such species are useful to local people as they rarely give vernacular names to plants that are not useful to them. This study revealed that *C. megalobotrys* has vernacular names and traditional uses in 87.5% of the countries where it is indigenous (Tables 1 and 2), with the exception of Tanzania where no vernacular names or traditional uses have been recorded. *Croton megalobotrys* is commonly referred to as “fever-berry” in 62.5% of the countries where it is indigenous, these include Zimbabwe, Botswana, Namibia, Malawi and South Africa (Table 1). *Croton megalobotrys* got such a common name mainly because the seeds and bark of the species have considerable reputation among local communities as remedy for fever or malaria [12-14,17,19]. Literature records indicate that on 30 September 1899, a medical officer, Dr John Maberly used bark and seeds of *C. megalobotrys* mixed with opium (*Papaver somniferum* L.) as remedy for malaria [20]. According to Coates Palgrave [17], *C. megalobotrys* bark and seeds are well known among local communities in southern Africa and early pioneers in malarial areas not only as a cure for fever but also as a prophylactic. Other common names which allude to the usage of *C. megalobotrys* as herbal medicine for fever or malaria include “fever bark”, “fever bark tree”, “fever-berry cotton”, “large fever-berry” and “river fever-berry” (Table 1). The Afrikaans vernacular name “grootkoorsbessie” is a contraction of three words “groot”, “koors” and “bessie” which translate to “large”, “fever” and “berry” respectively in English, suggesting that the large fruits (berries) characteristic of the species are used against fever.

The bark, fruits, leaves, roots and seeds of *C. megalobotrys* are used as herbal medicines for 35 and two human and animal diseases respectively (Table 2). The bark or root infusion of *C. megalobotrys* is taken orally as an abortifacient and purgative or as herbal medicine for ascites also known as dropsy or pain in the alimentary canal in Malawi and Zimbabwe [4,5,39]. In Malawi, bark decoction of *C. megalobotrys* is applied on fresh wounds or cuts while leaf or root decoction is taken orally as remedy for headaches [7]. In Zimbabwe, root bark powder of *C. megalobotrys* is taken orally as remedy for female infertility [5] and bark or root decoction is taken orally as remedy for malaria [4]. Bark decoction of *C. megalobotrys* is also taken orally as herbal medicine for malaria in Mozambique [3] and Namibia [41]. In Botswana and South Africa, seeds or bark and root decoction of *C. megalobotrys* are taken orally as purgative [3,6,17,24,28,32] or as herbal medicine for fever or malaria [3,12,17,21,24,34] or berries are applied as poultices for skin infections or muscle aches or pain [24,35].

![Figure 2: Relationship between the number of vernacular names and traditional uses of *Croton megalobotrys* in southern Africa](image-url)
The bark, leaf, root or seed decoction of *C. megalobotrys* is taken orally as herbal medicine for sexually transmitted infections (STIs) in Zambia [37] and other STIs such as gonorrhoea in Zambia [38] and venereal diseases in South Africa [6]. Research done by Mabogo [6] revealed that seed decoction of *C. megalobotrys* is taken orally as herbal medicine for kidney problems and purification of the blood. In Botswana, root infusion of *C. megalobotrys* is taken orally for fattening babies [11] and seed decoction of the species is taken orally as laxative [22]. Recently, research done by Tietjen *et al* [8] in Botswana revealed that *C. megalobotrys* is widely used to treat or manage human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) opportunistic infections such as diarrhoea, loss of appetite and stomach problems.

Croton megalobotrys is used as an ethnoveterinary medicine by the resource-limited farmers in Botswana as an alternative to orthodox pharmaceuticals. Leaf decoction of *C. megalobotrys* is applied on lumpy skin [27] and bark or leaf decoction is also applied on animal sores or wounds [29]. *Croton megalobotrys* stem bark is widely used as a fish poison in Botswana [21,23], Mozambique [3] and South Africa [3,42]. *Croton megalobotrys* also provides varied products throughout its distributional range and these include construction poles, timber and firewood. According to Mutakela [43], *C. megalobotrys* is an important source of timber and other non-woody plant products in rural areas of Botswana. In Botswana, *C. megalobotrys* is browsed by game and livestock [44] and its leaf decoction is used as a pesticide, usually sprayed on arable land to kill worms [29]. Research by Hamilton *et al*. [45], and Raman and Kandula [46] showed that *C. megalobotrys* is used as a stimulant by chacma baboons (*Papio ursinus*). Chacma baboons in South Africa are known to consume each day a little quantity of leaves of the species, which is not classified as the baboon’s regular diet [45,46]. Consumption of *C. megalobotrys* is not directly related to any illness but for its stimulant activity [46]. *Croton megalobotrys* is planted as an ornamental and shade plant in rural areas of Botswana [29].

DISCUSSION

Correlation between ethnomedicinal uses and pharmacological activities of *C. megalobotrys*

Aligning the available ethnomedicinal information about *Croton megalobotrys* in southern Africa, it appears that the species is most commonly used as an abortifacient, fish poison, purgative and as herbal medicine for the treatment and management of HIV/AIDS opportunistic infections, malaria and STIs (Figure 3). Several other *Croton* species including *C. macrostachyus* Hochst. ex Delile, *C. megalocarpus* Hutch. and *C. sylvaticus* Hochst. ex C. Krauss. are widely used as purgatives [48-50]. The seeds of *C. tiglium* L. are the sources of a commercially produced and marketed croton oil widely used as a purgative [2]. *Croton megalobotrys* also plays an important role in the treatment and management of HIV/AIDS and malaria which were classified among the top five killer diseases in Africa in 2012 by the World Health Organization. Research by Ramjee et al. [51] revealed that STIs are among the most prevalent infectious diseases worldwide and approximately 1 million women in Africa die yearly due to infection with HIV/AIDS and STIs. Whilst *C. megalobotrys* has proved to be useful over the centuries as herbal medicine for some of these important diseases in Africa, no meaningful

<table>
<thead>
<tr>
<th>Vernacular names and ethnic group in brackets</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever-berry, large fever-berry, river fever-berry (English), mobwiti, moépé, mokungulu, mosholo, moshole, motlogatloga, motsébè, motutakuka, mukungulu, mutesbi, phofutsa, phokotsa, phufutsa, phukutsa, pokudza, pukhutsa (Setswana), okayi (Seyei)</td>
<td>Malawi</td>
<td>[7,15]</td>
</tr>
<tr>
<td>Chungué-chungué (Chin.do)</td>
<td>Mozambique</td>
<td>[30]</td>
</tr>
<tr>
<td>Grootoorsbessie (Afrikaans), fever-berry, large fever-berry (English), mununkila, murongo, mutwatwa (Silozi)</td>
<td>Namibia</td>
<td>[31]</td>
</tr>
<tr>
<td>Grootoorsbessie, koorsboom (Afrikaans), fever-bark, fever bark tree, fever-berry, large fever-berry, lowweld croton (English), mohlokohloko (Pedi), moépé, mosôôlê, motsébè, motshebe, motsibi, mutsebi, phukutsa (Setswana), lijaha (Sotho), nxunguxungu, nxungwexungwe, shungweshungwe, xunguxungu (Tsonga), muruthu (Venda)</td>
<td>South Africa</td>
<td>[3,6,9,12,17,32]</td>
</tr>
<tr>
<td>Muchape (Kore-kore), mtutu (Kunda), munanga (Kunda, Naonga), mutu, mututatua (Tonga/Tokaleya/Loi)</td>
<td>Zambia</td>
<td>[36-38]</td>
</tr>
<tr>
<td>Fever-berry, fever-berry croton (English), umtshape (Ndebele) mubvukuta, muchape, mugubvuka, mushape (Shona), mutonga (Tonga)</td>
<td>Zimbabwe</td>
<td>[4,16,17,39,40]</td>
</tr>
</tbody>
</table>
phytochemical and pharmacological analyses exist in literature linking active principles of the species to its ethnomedicinal uses.

Apart from 4-hydroxyhygric acid isolated from the bark of *C. megalobotrys* by Goodson and Clewer [19] and a cinnamate derivative (*E*-tetratriacontyl-3-(4-hydroxy-3-methoxyphenyl)-2-propenate (Figure 4)) isolated from the chloroform fraction of the stem bark extract by Abosi and Majinda [52], little is known about the chemical constituents of the species. But genus *Croton* is known to have a wide range of chemical compounds including alkaloids, cardenolides, diterpenoids, flavonoids, saponins, mono and sesquiterpenoids [2,53]. The diterpenoids isolated from other species of the *Croton* genus are regarded as toxic irritants of the skin and mucosas [54] and they produce a burning sensation in the throat and mouth [3,19].

Selowa et al [35] evaluated antibacterial activities of *n*-hexane, dichloromethane, ethyl acetate, acetone and methanol leaf powder extract of *C. megalobotrys* against Gram negative bacteria *Enterococcus faecalis* and *Escherichia coli*, and Gram positive bacteria *Pseudomonas aeruginosa* and *Staphylococcus aureus* using bioautograph and micro-dilution techniques.

Table 2: Traditional uses of *Croton megalobotrys* in southern Africa

<table>
<thead>
<tr>
<th>Use</th>
<th>Plant parts used</th>
<th>Country practiced</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortifacient</td>
<td>Bark or root decoction taken orally</td>
<td>Zimbabwe</td>
<td>[4,5,39]</td>
</tr>
<tr>
<td>Ascites (dropsy)</td>
<td>Bark or root infusion taken orally</td>
<td>Malawi, Zimbabwe</td>
<td>[4,5]</td>
</tr>
<tr>
<td>Cuts</td>
<td>Bark decoction applied on affected body part</td>
<td>Malawi</td>
<td>[7]</td>
</tr>
<tr>
<td>Diarrhoea of HIV patients</td>
<td>Bark decoction taken orally</td>
<td>Botswana</td>
<td>[8]</td>
</tr>
<tr>
<td>Female infertility</td>
<td>Root bark powder taken orally</td>
<td>Zimbabwe</td>
<td>[5]</td>
</tr>
<tr>
<td>Fever</td>
<td>Seed taken orally</td>
<td>Botswana, South Africa</td>
<td>[24,34]</td>
</tr>
<tr>
<td>Gonorrhoea</td>
<td>Leaf decoction taken orally</td>
<td>Zambia</td>
<td>[38]</td>
</tr>
<tr>
<td>Headache</td>
<td>Leaf or root decoction taken orally</td>
<td>Malawi</td>
<td>[7]</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Bark decoction taken orally</td>
<td>Botswana</td>
<td>[8]</td>
</tr>
<tr>
<td>Kidneys problems</td>
<td>Seed decoction taken orally</td>
<td>South Africa</td>
<td>[6]</td>
</tr>
<tr>
<td>Laxative</td>
<td>Seed decoction taken orally</td>
<td>Botswana</td>
<td>[22]</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>Bark decoction taken orally</td>
<td>Botswana</td>
<td>[8]</td>
</tr>
<tr>
<td>Malaria</td>
<td>Bark, root, seed decoction</td>
<td>Botswana, Mozambique, Namibia, South Africa, Zimbabwe</td>
<td>[3,4,21,24,41]</td>
</tr>
<tr>
<td>Malaria (Papaver somniferum L.)</td>
<td>Bark and seed mixed with opium</td>
<td>South Africa</td>
<td>[20]</td>
</tr>
<tr>
<td>Muscle aches or pain</td>
<td>Berries applied on affected body part as poultices</td>
<td>Botswana, South Africa</td>
<td>[24,35]</td>
</tr>
<tr>
<td>Pain in alimentary canal</td>
<td>Bark powder taken orally</td>
<td>Malawi, Zimbabwe</td>
<td>[5]</td>
</tr>
<tr>
<td>Purgative</td>
<td>Bark, root or seed decoction taken orally</td>
<td>Botswana, Malawi, South Africa, Zambia, Zimbabwe</td>
<td>[6,24,28,32]</td>
</tr>
<tr>
<td>Purification of blood</td>
<td>Seed decoction taken orally</td>
<td>South Africa</td>
<td>[6]</td>
</tr>
<tr>
<td>Sexually transmitted skin infections (STIs)</td>
<td>Bark or root decoction taken orally</td>
<td>Zambia</td>
<td>[37,47]</td>
</tr>
<tr>
<td>Skin infections</td>
<td>Berries applied as poultices on affected body part</td>
<td>Botswana, South Africa</td>
<td>[24,35]</td>
</tr>
<tr>
<td>Stomach problems</td>
<td>Bark decoction taken orally</td>
<td>Botswana</td>
<td>[21]</td>
</tr>
<tr>
<td>Venereal diseases</td>
<td>Seed decoction taken orally</td>
<td>South Africa</td>
<td>[6]</td>
</tr>
<tr>
<td>Ethno-veterinary medicine</td>
<td>Lumpy skin</td>
<td>Botswana</td>
<td>[27]</td>
</tr>
<tr>
<td>Wounds</td>
<td>Bark and leaf decoction applied on wounds</td>
<td>Botswana</td>
<td>[29]</td>
</tr>
<tr>
<td>Other uses</td>
<td>Browse for game and livestock</td>
<td>Botswana</td>
<td>[44]</td>
</tr>
<tr>
<td></td>
<td>Construction timber</td>
<td>Botswana</td>
<td>[11,29]</td>
</tr>
<tr>
<td></td>
<td>Fuel wood</td>
<td>Botswana</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>Fish poison</td>
<td>Botswana, Mozambique, South Africa</td>
<td>[3,21,23,42]</td>
</tr>
<tr>
<td></td>
<td>Kill worms in arable land</td>
<td>Botswana</td>
<td>[29]</td>
</tr>
<tr>
<td></td>
<td>Ornamental</td>
<td>Botswana</td>
<td>[22]</td>
</tr>
<tr>
<td></td>
<td>Shade</td>
<td>Botswana</td>
<td>[29]</td>
</tr>
</tbody>
</table>

Trop J Pharm Res, October 2017; 16(10): 2539
Figure 3: Main traditional applications of *Croton megalobotrys* in southern Africa. A traditional use is only counted once per publication.

![Chemical structure of 4-hydroxyhygic acid](image1)

4-hydroxyhygic acid

Figure 4: Chemical structures of compounds isolated from the bark of *Croton megalobotrys*

All extracts showed antibacterial activities, with the highest activity observed against *Enterococcus faecalis* with a minimal inhibitory concentration (MIC) value of 0.02 mg/ml [35]. These findings somehow support the species’ antibacterial potential and its usefulness in its traditional usage as herbal medicine for diarrhoea [8], gonorrhoea [38], skin infections [24,35], STIs [37], stomach problems [8] and venereal diseases [6]. More research is recommended focusing on antibacterial activities of *C. megalobotrys* against known bacterial pathogens such as *Neisseria gonorrhoeae* which cause gonorrhoea, and other bacterial pathogens such as *Shigella dysenteriae*, *Shigella flexneri* and *Vibrio cholerae* which cause gastrointestinal infections.

Abosi and Majinda [52] evaluated antimalarial activities of root, stem bark and leaf extracts of *C. megalobotrys* in NMRI white albino mice infected with 1 x 10^7 *Plasmodium berghei* (ANKA) parasitized erythrocytes. The effects of the extracts were assessed on early infection, established infection and the residual effect of the extracts was also assessed using the Repository or Prophylactic test. The stem bark extract produced a suppressive effect of 74.5 % in early infection and a residual inhibitory effect of 86.9 %. In an established infection, a mean survival time of 16.2 days was achieved although parasitaemia was not completely eliminated. Antiplasmodial activity was observed in *in vitro* test with IC_{50} values of 1.74 ± 0.47 μg/ml and 3.78 ± 1.03 μg/ml for the hexane fraction of the stem bark extract against chloroquine sensitive (D6) and chloroquine-resistant (W2) strains of *Plasmodium falciparum* respectively [52]. The antimalarial activity demonstrated in this study support the folkloric use of *C. megalobotrys* for treating and managing malaria in southern Africa and also using the species as prophylactic medicine for malaria [3,4,20,21,24]. Previous research by Ndunda [53] revealed that over 70 % of species belonging to the *Croton* genus reported in ethnomedicinal treatment of malaria and tested for antimalarial activities were found to be active, an indication of the potential of these species as antimalarial remedies. The preliminary radical scavenging evaluation carried out by Abosi and Majinda [52] using the chloroform fraction in qualitative 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed activity at a loading dose of 0.05 μg, thus exhibiting radical scavenging activity comparable to that of ascorbic acid. Collectively, data obtained by Abosi and Majinda [52] indicate that *C. megalobotrys* suppresses free radical formation; however, determining the exact mechanisms of action will require further investigations.
Tietjen et al [8] evaluated the crude extracts of C. megalobotrys for in vitro cytotoxicity and inhibition of wild-type (NL4.3) and ARV-resistant HIV-1 replication in an immortalized GFP-reporter CD4, T-cell line. The study by Tietjen et al [8] is based on the wide use of C. megalobotrys as herbal medicine for treating and managing HIV/AIDS in Botswana where in some cases the species is used concurrently with standard ARVs. Croton megalobotrys bark extracts inhibited HIV-1NL4.3 replication with dose-dependence and without concomitant cytotoxicity and inhibited HIV-1 replication by a maximum of 45% at concentrations as low as 0.05 mg/ml. According to Tietjen et al [8], C. megalobotrys extracts did not interfere with antiviral activities of licensed ARVs when applied in combination and exhibited comparable efficacies against viruses harboring major resistance mutations to licensed protease, reverse-transcriptase, or integrase inhibitors. Based on these findings, C. megalobotrys can therefore, be administered in parallel with Western HIV/AIDS treatments in managing the effects of HIV/AIDS in Botswana, a disease that has become a devastating epidemic in sub-Saharan Africa [55].

Toxicity evaluation

A number of ethnobotanical studies have highlighted the toxicity of C. megalobotrys when used as herbal medicine. Croton megalobotrys is a well-known poisonous plant in South Africa [32,56] and Zimbabwe [4,5,40,57], although it is widely used as herbal medicine in both countries. According to Gelfand et al [5], taking of bark and root of C. megalobotrys has been reported to cause swelling of testicles in Zimbabwe. Mabogo [6] emphasized the need to follow traditional healers’ dosage instructions when using C. megalobotrys as a purgative, since there is a possibility of fatal side effects. It is commonly recommended that an adult should take one or three quarters of a seed at a time [6]. Preliminary toxicity investigations showed that ground bark of C. megalobotrys caused purgation and emesis in dogs, but rabbits were less sensitive although in doses of 1 g/kg of body weight induced diarrhoea [19]. In human beings, administration of C. megalobotrys bark causes intense burning sensation in the throat, salivation and slight nausea with slight laxative effect [3,19]. The toxicity effects of C. megalobotrys are attributed to toxic diterpenes which are characteristic of most species belonging to the Croton genus [58]. No detailed cytotoxicity or toxicity effects of C. megalobotrys have been undertaken recently, although it is clear that detailed toxicity studies for such a widely used medicinal plant in southern Africa are required.

CONCLUSION

The historical traditional usage of C. megalobotrys as herbal medicine in southern Africa calls for detailed phytochemical and pharmacological properties of the species aimed at identifying the compounds responsible for its wide usage as herbal medicine. At the present moment, there is not yet enough systematic data regarding phytochemistry, pharmacological properties and clinical research of C. megalobotrys extracts and compounds. There are very few to nil experimental studies, clinical research trials and target-organ toxicity studies involving C. megalobotrys extracts and its compounds that have been carried out so far. Given this background, it is quite difficult to correlate the ethnomedicinal uses of the species with the few phytochemical profiling and pharmacological evaluations that have been done so far. There is need therefore, to evaluate pharmacological properties of the species, as these may be directly related to the species ethnomedicinal uses. Detailed pharmacological studies will provide some insight into the therapeutic potential of C. megalobotrys. Since C. megalobotrys is classified as poisonous in southern Africa [4-6,32,40,56], there is need for a detailed toxicological assessment of the species using reliable analytical methods.

DECLARATIONS

Acknowledgement

Financial support of this work by the National Research Foundation (NRF) and Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare is gratefully acknowledged.

Conflict of Interest

No conflict of interest associated with this work.

Contribution of Authors

The authors declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by them.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their
REFERENCES

42. Neuwinger HD. Plants used for poison fishing in tropical Africa. Toxicon 2004; 44: 417-430.

