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Abstract 

Purpose: To identify the metabolites of gardenin A (GA) in rat liver microsomes (RLMs) using ultra-high 
performance liquid chromatography coupled with linear ion-trap Orbitrap mass spectrometry (UHPLC-
LTQ-Orbitrap). 
Methods: The sample was prepared by incubating GA (100 µg/mL) with RLMs (0.5 mg/mL) for 8 h. 
Then 5 µL of the sample was injected into UHPLC-LTQ- orbitrap mass spectrometer. The metabolites of 
GA were tentatively identified based on accurate mass measurements, fragmentation patterns, 
chromatographic retention times, and bibliography data. 
Results: A total of 12 metabolites were detected and identified. Based on their structures, the main 
reactions in the metabolism of GA are de-methoxylation and de-methylation. 
Conclusion: This is the first report on in vitro metabolites of GA. These results are considered very 
helpful for better comprehension of the metabolism of GA and its pharmacological effects. 
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INTRODUCTION 
 
Murraya paniculata (L.) Jack, also called 
“qianlixiang in chinese” in China, belongs to the 
family Rutaceae. It is a very variable evergreen 
shrubby plant cultivated widely in gardens as an 
ornamental in many areas of China. The plant is 
officially listed in the Chinese Pharmacopoeia as 
a drug in Chinese Traditional medicine (TCM) [1]. 
Dried leaves or tender branches have been used 
all over China as a folk medicine due to the 
stimulant, astringent, antidysenteric, toothache 
remedy, and antidiarrheal [2-4]. Gardenin A (5-
hydroxy-6, 7, 8, 3', 4', 5'-hexamethoxyflavone, 
GA), a hydroxylated polymethoxyflavonoid (OH-
PMF), has been isolated from Murraya 

paniculata (L.) Jack [5-6]. Pharmacological 
studies indicate that it possesses variety of 
biological activities, such as anticancer and anti-
inflammatory effects [7-9]. 
 
Research on drug metabolism research is very 
important in the early phases of drug discovery 
and development. It is also important for 
minimizing the adverse effect of 
pharmaceuticals, and for maximizing their 
therapeutic value [10,11]. A previous report [12] 
demonstrated that 26 metabolites of GA were 
observed in vivo; these might be responsible for 
the pharmacological actions of GA. However, it is 
hard to establish the reliability of this observation, 
due to difficulties involved in obtaining enough 
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metabolites in vivo. Thus, it is important to obtain 
GA metabolites in vitro. To the best of our 
knowledge, metabolites of GA have not been 
investigated in vitro. 
 
High performance liquid chromatography coupled 
with mass spectrometry has become a popular, 
and indeed the main method for the structural 
characterization of drug metabolites in vivo and 
in vitro due to its high efficiency, sensitivity, and 
selectivity. Among several different LC/MS 
platforms, ultra–high performance liquid 
chromatography high-resolution mass 
spectrometry (UHPLC-HRMS) [13-15] such as 
UHPLC-LTQ-Orbitrap is especially useful for the 
characterization of drug metabolites due to its 
higher and faster separation and resolution 
capacities. 
 
The present study was carried out identify the 
metabolites of GA in rat liver microsomes (RLMs) 
with a view to providing better understanding of 
the metabolism of the drug and its 
pharmacological effects. 
 
EXPERIMENTAL 
 
Chemicals and reagents 
 
Gardenin A, 5-hydroxy-7, 3', 4', 5'-
tetramethoxyflavone and 5-hydroxy-7, 3', 4'-
trimethoxyflavone was purchased from Chengdu 
Biopurify Phytochemicals Co, Ltd (Sichuan, 
China). Acetonitrile, and methanol (HPLC grade) 
used were products of Fisher Scientific (Fisher, 
Fair Lawn, NJ, USA), and ultra-pure water used 
throughout the experiment was produced by a 
Milli-Q system (Millipore, Bedford, MA, USA). 
The 0.22 mm membranes used in the study were 
purchased from Waters Corporation (USA). 
Reduced form of nicotinamide adenine 
dinucleotide phosphate (NADPH) was supplied 
by Zhong Sheng Rui Tai Biotech (Beijing, China). 
RLMs were purchased from BD Biosciences 
(Bedford, MA, USA). All other reagents were of 
analytical grade. 
 
Microsome incubation 
 
Incubation conditions of microsome incubation 
experiment were established and controlled to 
provide a reproducible and linear rate of the 
metabolism in vitro. The incubation mixture in 
final volume of 1 mL contained GA (100 µg/mL), 
phosphate buffer (0.1 mol/L, pH 7.4), magnesium 
chloride (5 mM) and RLMs (0.5 g/mL). The 
incubation mixture was pre-incubated for 5 min in 
a water bath at 37 °C and reactions were 
initiated by addition of NADPH (1 mM). The 
reaction was terminated by adding 1 mL of ice-

cold acetonitrile, vortexing and centrifuging at 
15,000 rpm for 10 min at 4 °C. Aliquots of the 
supernatant were subjected to UHPLC-LTQ-
Orbitrap MS to identify the metabolites. Blank 
samples were of the same composition as the 
test samples, but without GA. All samples were 
prepared in triplicate. 
 
Instrumentation and chromatographic 
conditions 
 
All UHPLC-MS analyses were carried out on 
LTQ/Orbitrap XL hybrid mass spectrometer 
(Thermo Electron, Bremen, Germany) equipped 
with an ESI source (Thermo Electron, Bremen, 
Germany). An Accela UHPLC system 
(ThermoFisher Scientific) was equipped with an 
autosampler, a vacuum de-gasser unit and a 
quaternary pump. Chromatographic separations 
were carried out on a BEH C18 column (2.1 × 50 
mm, 1.7 μm) at room temperature and a flow rate 
of 0.2 mL/min. The mobile phase consisted of 
solvent A (water) and solvent C (acetonitrile). 
The percentage of solvent A was changed as 
follows: 0-2 min, 95 % A; 2-3 min, 95-80 % A; 3-
20 min, 80 - 40 % A; 20-21 min, 40-20% A; 21-25 
min, 20 % A; 25-26 min, 20-95 % A; 26-30 min, 
95 % A; an aliquot of 5 μL of the supernatant 
was injected into UHPLC-LTQ-Orbitrap MS. 
 
The optimized operating parameters in the 
positive ion mode were as follows: capillary 
voltage of 25 V, source voltage of 4.0 kV, 
capillary temperature of 350 °C, sheath gas flow 
rate of 40 (arbitrary units), auxiliary gas flow rate 
of 20 (arbitrary units), and tube lens of 110 V. 
Metabolites were detected by full-scan mass 
analysis from 100 to 800 m/z at a resolving 
power of 30,000 with data-dependent MS2 
analysis triggered by the three most-abundant 
ions from the precursor list of predicted 
metabolites followed by MS2 analysis of the 
most−abundant product ions. Collision-induced 
dissociation (CID) was performed with an 
isolation width of 2 Da. The collision energy was 
set to 35 %. 
 
Data processing 
 
Thermo Xcaliber 2.1 workstation (Thermo Fisher 
Scientific) was used for data acquiring and 
processing. In order to obtain as many fragment 
ions as possible, the peaks detected with 
intensity over 50,000 were selected for 
identification. The chemical formulas of all parent 
and fragment ions of the selected peaks were 
calculated from the accurate mass using a 
formula predictor by setting the parameters as 
follows: C [0 - 35], H [0 - 50], O [0 - 15], S [0 - 1], 
N [0 - 3], and Ring Double Bond (RDB) 
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equivalent value [0 - 15]. Other elements such as 
P and Br were not considered as they were 
rarely present in the complex matrix. The 
maximum mass errors between the measured 
and the calculated values were < 5 ppm. Blank 
RLMs samples were used as control to compare 
with the analyzed samples, and they were all 
processed under the same conditions. 
 
RESULTS 
 
Fragmentation pathway of GA 
 
The parent ion showed a protonated ion [M+H]+ 
at m/z 419.13321 (-1.07 ppm, C21H23O9) in 
positive ion mode. Fragmentation of this parent 
ion at m/z 389, m/z 404, m/z 358, m/z 371, and 
m/z 386 by the loss of the moiety 30 (2CH3

。), 15 
(CH3

。), 61 (2CH3
。+OCH3

。), 48 (2CH3
。+ H2O), 

and 33(CH3
。+ H2O) were detected as diagnostic 

product ions in the MS2 spectra. The MS2 
spectrum of GA is shown in Figure 1. 
 
Identified metabolites 
 
The high–resolution extracted Ion Chromato-
graphy (HREIC) of blank, GA incubated in RLMS 
samples in 30 min are shown in the Figure 2. For 
the first time, a total of 12 metabolites of GA 
were detected and identified based on accurate 
mass measurements, fragmentation patterns, 
and chromatographic retention times in positive 
ion mode. The detailed information is illustrated 
in Table 1. 
 
Metabolite M0, M8 and M12 were identified as 
GA, 5-hydroxy-7, 3', 4', 5'-tetramethoxyflavone 
and 5-hydroxy-7, 3', 4'-trimethoxyflavone, 
respectively by comparing the retention time, 
[M+H]+ ion and MS2 spectra with authentic 
references. 
 
Metabolites M1, M2, M4, M6 and M7 were 
detected at 6.74, 7.54, 9.36, 14.40 and 16.44 
min with protonated molecular ions [M+H]+ at m/z 
361.09153 (-0.72 ppm, C18H17O8), m/z 
361.09164 (-0.43 ppm, C18H17O8), m/z 
361.09157 (-0.61 ppm, C18H17O8), m/z 
361.09171 (-0.22 ppm, C18H17O8), and m/z 
361.09168 (-0.30 ppm, C18H17O8), 58 Da 
(2CH2+OCH2) less than that of GA. The 
diagnostic product ions at m/z 346 [M+H- CH3

。]+, 
m/z 314 [M+H- 3CH3

。]+, and m/z 329[M+H- 
2CH3

。]+ were detected. They were tentatively 
identified as 8, 3’, 5’-trihydroxy-5, 7, 4’-
trimethoxyflavone, 5, 7, 3’-trihydroxy-8, 4’, 5’-
trimethoxyflavone, 5, 8, 3’-trihydroxy-7, 4’, 5’-
trimethoxyflavone, 5, 7, 4’-trihydroxy-8, 3’, 5’-

trimethoxyflavone, and 5, 8, 4’-trihydroxy-7, 3’, 
5’-trimethoxyflavone, respectively [16]. 
 
Metabolites M3 and M5 were detected at 7.54 
and 12.97 min respectively, with the same quasi-
molecular ion [M+H]+ at m/z 375.11 (C19H19O8) 
that is 44 Da (CH2+OCH2)  less than the parent 
compound GA. The CID product-ion spectrum of 
m/z 375 displayed three major fragment ions at 
m/z 360 ([M+H-CH3

•]+), m/z 314 ([M+H-2CH3
•-

OCH3
•]+) and m/z 329 ([M+H-CH3

•-OCH3
•]+). It 

was identified as the de-methoxylation and de-
methylation product of GA and were tentatively 
confirmed as 5, 4’-dihydroxy-7, 8, 3', 5'-tetra-
methoxyflavone and 5, 3'-dihydroxy-7, 8, 4', 5'-
tetramethoxyflavone, respectively [12]. 
 
Metabolite M9-M11 was eluted at 21.03, 21.60, 
and 22.00min, respectively. Each of them 
showed a protonated molecule ion at m/z 389.12 
(C21H27O11), 30 Da (OCH2) more than that of 
parent drug. The fragment ions at m/z 374 (4.2 
ppm, C6H9O7), m/z 359 (4.8 ppm, C6H9O7) and 
m/z 356 (4.8 ppm, C6H9O7) in the MS2 spectra of 
metabolite M9-M11, indicated that they were a 
pair of hydroxy-pentamethoxyflavone isomers. 
Based on examination of known polymethoxy-
flavonoids isolated from genus Murraya, and 
from bibliography data [5,12], M9 and M10 were 
tentatively identified as 5-hydroxy-6, 7, 3', 4', 5'- 
pentamethoxyflavone, 5-hydroxy-6, 7, 8, 3', 4'-
pentamethoxyflavone, respectively. M11 was 
identified as hydroxypentamethoxy-flavone. 
 
DISCUSSION 
 
In the study, we identified metabolites of GA in 
vitro for the first time. These metabolites are 
polymethoxylated flavonoids with many methoxy 
groups (OH-PMFs), which facilitate their 
detection by ESI in positive mode. MS conditions 
were optimized on an UHPLC-ESI-LTQ-Orbitrap 
instrument using standard solution of GA (10 
μg/mL). In order to obtain an appropriate elution 
system, two different mobile systems, acetonitrile 
– water and methanol – water were tested. It was 
found that for GA, [M+H]+ ions of basically the 
same intensity were commonly detected with 
high sensitivity with these two solvent conditions. 
However, the mobile systems of acetonitrile – 
water with a gradient elution mode afforded 
much lower column pressure and better 
resolution of chromatographic peaks among the 
metabolites and endogenous components than 
that of water–methanol.  
 
To our best knowledge, not much has been done 
on the elucidation of the metabolites of GA, 
although some studies on the metabolism of GA 
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Figure 1: MS2 spectrum of GA 
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Figure 2: HREIC in 5 ppm for the metabolites in RLMs (A) m/z 361.09179, 375.10744; (B) m/z 329.10196, 
359.11253, 389.12259 
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Table 1: Characteristic fragment ions of GA metabolites in RLMs by UHPLC-LTQ-Orbitrap MS 
 

Peak tR Theoretical Mass 
m/z 

Experimental Mass 
m/z 

Error 
(ppm) 

Formula [M-
H]- MS/MS fragment Identification 

0 22.76 419.13269 419.13321 -1.071 C21H23O9 MS2 [419]: 389(100), 404(65), 358(40), 
371(38), 386(37) gardenin A 

1 6.74 361.09179 361.09153 -0.717 C18H17O8 MS2 [361]: 346(100), 314(26), 329(15) 8, 3’, 5’-trihydroxy-5, 7, 4’-
trimethoxyflavone 

2 7.54 361.09179 361.09164 -0.426 C18H17O8 MS2 [361]: 346(100) 5, 7, 3’-trihydroxy-8, 4’, 5’-
trimethoxyflavone 

3 7.54 375.10744 375.10721 -0.624 C19H19O8 
MS2 [375]: 360(100), 314(82), 329(49), 

347(19) 
5, 4’-dihydroxy-7, 8, 3', 5'-

tetramethoxyflavone 
4 9.36 361.09179 361.09157 -0.606 C18H17O8 MS2 [361]: 346(100) 5, 8, 3’-trihydroxy-7, 4’, 5’-

trimethoxyflavone 
5 12.97 375.10744 375.10708 -0.957 C19H19O8 MS2 [375]: 360(100) 5, 3'-dihydroxy-7, 8, 4', 5'-

tetramethoxyflavone 

6 14.40 361.09179 361.09171 -0.218 C18H17O8 MS2 [361]: 329(100), 346(8) 5, 7, 4’-trihydroxy-8, 3’, 5’-
trimethoxyflavone 

7 16.44 361.09179 361.09168 -0.301 C18H17O8 MS2 [361]: 346(100) 5, 8, 4’-trihydroxy-7, 3’, 5’-
trimethoxyflavone 

8 20.77 359.11253 359.11206 -1.307 C19H19O7 MS2 [359]:344(100), 343(26), 315(15) 5-hydroxy-7, 3', 4', 5'-
tetramethoxyflavone 

9 21.03 389.12259 389.12309 -1.295 C20H21O8 MS2 [389]: 356(100), 328(72), 374(70), 
359(15) 

5-hydroxy-6, 7, 3', 4', 5'- 
pentamethoxyflavone 

10 21.60 389.12259 389.12234 -1.938 C20H21O8 
MS2 [389]: 359(100), 374(75), 356(45), 

341(41) 
5-hydroxy-6, 7, 8, 3', 4'-
pentamethoxyflavone 

11 22.00 389.12259 389.12283 -0.679 C20H21O8 
MS2 [389]: 374(100), 328(74), 359(48), 

356(21) hydroxy-pentamethoxyflavone 

12 22.29 329.10196 329.10159 -1.139 C18H17O6 MS2 [329]:313(100), 314(77), 285(34) 5-hydroxy-7, 3', 4'-trimethoxyflavone 



Cai et al 

Trop J Pharm Res, February 2017; 16(2): 426  
 

have been done in rats [12]. For example, 26 
metabolites of GA were unambiguously and 
tentatively identified in Sprague-Dawley rats by 
comparison of retention times and mass 
spectrometry. However, it is worth mentioning 
that in vitro metabolites of GA; and the 
differences between in vivo and in vitro 
metabolites of GA were still unclear until now. In 
our study, 12 metabolites were detected and 
identified in RLMs. There was a good agreement 
between these metabolites and those obtained in 
in vivo studies. This clearly shows that it is 
feasible to obtain metabolites of GA in vitro. 
 
CONCLUSION 
 
This study has successfully elucidated the in vitro 
metabolism of GA in RLMs using UHPLC-LTQ-
Orbitrap mass spectrometry. Among the 12 
metabolites detected, 3 have been 
unambiguously confirmed, while the others are 
tentatively identified. The structures clearly 
indicate that de-methoxylation and de-
methylation are the major metabolic fates of GA. 
These metabolites of GA in RLMs would facilitate 
better understanding of the metabolism and its 
pharmacological effects. 
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