Tropical Journal of Pharmaceutical Research March 2017; 16 (3): 494-500 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.

> Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v16i3.1

Original Research Article

Preparation of Tradescantia pallida-mediated zinc oxide nanoparticles and their activity against cervical cancer cell lines

Cai-yun Li, Zheng-cheng Zhang*, Jing-yue Mao, Li-feng Shi, Ying Zheng and Jia-li Quan

Department of Obstetrics and Gynecology, The 117th hospital of Chinese People's Liberation Army, Hang Zhou City, Zhe Jiang Province 310013, China

*For correspondence: Email: zhengceng3476@hotmail.com; Tel/Fax: 0086-571-87348682

Received: 18 October 2016

Revised accepted: 14 February 2017

Abstract

Purpose: To synthesize zinc oxide nanoparticles (ZnO NPs) using Tradescantia pallida. (Commelinaceae) and determine their fluorescent and cytotoxic properties.

Methods: ZnO NPs were synthesized according to a simple protocol using T. pallida aqueous leaf extract (TPALE). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the morphology of the ZnO NPs. X-ray diffraction (XRD) and Fourier transforminfrared spectroscopy (FTIR) measurements were performed to determine their crystalline nature and functional groups, respectively. Fluorescence spectroscopy was used to assess the photoluminescence properties of ZnO NPs. Upon confirmation of ZnO NP synthesis, cytotoxicity tests were carried out against HeLa cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

Results: The agglomerated ZnO NPs were rod-shaped and had a mean particle size of 25 ± 2 nm. Further, they exhibited good photoluminescence with correlation to ZnO crystals. MTT assay results indicated significant cytotoxicity against HeLa cervical cancer cell line.

Conclusion: A simple approach for ZnO NP synthesis based on TPALE has been developed successfully. The synthesized ZnO NPs demonstrate good luminescence properties and cytotoxicity against cervical cancer line.

Keywords: Commelinaceae, Cytotoxicity, Photoluminescence, Setcreasea pallida, Setcreasea purpurea, Tradescantia pallida, ZnO nanoparticles

Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts

INTRODUCTION

Nanotechnology is one of the most versatile areas of current research and has wide-ranging applications. A number of toxic physio-chemical techniques, such as spray pyrolysis, gas-phase methods, chemical vapor deposition, electrochemical methods, and laser ablation techniques, have been introduced to synthesize nanoparticles (NPs) [1]. In this study, we focused on non-toxic-mediated synthesis of NPs based on plant extracts. *Tradescantia pallida* plants are mostly used as ornamental plants in Romania [2], but they are highly adaptable, particularly to shaded environments. Most researchers have used *T. pallida* root for histopathological studies [3]. Recently, a research group reported histopathological studies indicating that *T. pallida* can adapt to shade environments when calcium crystals are present [4]. Various researchers have focused on metal NP synthesis, but there are no results concerning T. pallida-mediated synthesis of metal NPs. In this study, we synthesized zinc oxide nanoparticles (ZnO NPs) using T. pallida aqueous leaf extract (TPALE). These ZnO NPs have a wide variety of applications, e.g., anti-microbial [5], cosmetics [6], anti-cancer [7], agriculture [8], optical [9], and a number of electrical [10]. Currently, researchers are interested in using ZnO NPs to diagnose medical disorders [11]. There have been number of studies concerning а photoluminescence and cytotoxicity studies of synthetic ZnO NPs [12-14].

EXPERIMENTAL

Materials

procured from Zinc acetate Avra was Laboratories, Hyderabad, India. HeLa cell lines were collected from the King Institute, Guindy, Chennai, Tamil Nadu, India. Methyl thiazolyldiphenyl-tetrazolium bromide (MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was obtained from AVRA Laboratories. Double-distilled water was used in all experiments with no purification.

Preparation of plant extract

T. pallida leaves were collected from the gardens of the 117th Hospital of the Chinese People's Liberation Army, Hang Zhou City. The leaves were dried in the shade for 4 days. Once dried, the leaf material was ground to a powder. Then, 30 g of the leaf powder material was immersed in 100 mL distilled H₂O and placed in a water bath for 1 h at 60 °C. The solution was filtered, then the filtrate was stored in the refrigerator until needed.

ZnO NP synthesis

TPALE (20 mg) was mixed with 1-mM zinc acetate (80 mL) and placed in a water bath at 60 °C for 4 h. The resultant solution was centrifuged for 30 min at 4,500 rpm. After centrifugation, a pellet was obtained and heated in a furnace at 350 °C for 5 h. Once the calcination process was completed, the powder samples were characterized as described below.

XRD analysis

X-ray diffraction (XRD) analysis (Model D8, Advance Powder X-ray Diffractometer, Bruker, Germany) and Fourier transform infrared (FT-IR) spectrum analysis (Jasco 6600, Oklahoma City, OK, USA) were used to identify the crystalline nature and functional groups of the synthesized ZnO NPs, respectively. The crystalline size of the ZnO NPs was calculated using Scherrer's relationship (Eq 1).

```
D = k\lambda/\beta\cos\theta (1)
```

where D is the particle size, k is Scherrer's constant (0.94), λ is the wavelength, derived from Bragg's equation (2dsin θ = n λ), β is the half-width full-maximum, and θ is the diffraction angle.

Morphological analysis

Scanning electron microscopy (SEM, Hitachi 7100, Tokyo, Japan) was used to determine the structure of the sample at a voltage of 100 kV. A Bruker 501 transmission electron microscopy (TEM) system, equipped with X-ray microanalysis capabilities, was used to perform microstructural analysis of the powder. Energy dispersive X-ray spectroscopy (EDAX) was carried out with an Oxford Instruments X-act 10mm SDD (Philips, CM 200) (operating voltage range: 20–200 kV; resolution: 2.4 Å).

Fluorescence studies

Fluorescence spectroscopy was used to investigate the photoluminescence properties of the synthesized ZnO NPs. Fluorescence spectra were obtained using an F-7000 FL spectrophotometer (Hitachi Perkin-Elmer, Bengaluru, Karnataka, India). Cell viability was calculated as in Eq 2.

Cell viability (%) = (At/An)100(2)

where At and An are the absorbance of samples for treated and normal cells, respectively.

Assessment of photoluminescence

The fluorescence spectrum of the ZnO NPs was analyzed to identify the emission bands and the transition between oxygen vacancies and interstitial oxygen [15,16].

Cytotoxicity assay

MTT assays were performed using ZnO NPs on a HeLa cell line [17]. The HeLa cells were cultured in Eagle's minimum essential medium (MEM) containing 1 % phosphate-buffered saline (PBS), 100 µg/mL penicillin, and 100 µg/mL streptomycin at 37 °C. 3-(4,5-dimethyl-2thiazoyl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cytotoxicity of ZnO NPs against cancer cell lines. The cancer

humidified cells were maintained in а atmosphere of 50 mg/mL CO2 at 37 °C. The cells were placed in 24-well plates. After an incubation period of 48 h, the cells reached confluence. incubated Thev were then in various concentrations of ZnO NPs in 0.1 % dimethyl sulfoxide (DMSO). The sample solution was removed and washed with PBS (pH 7.4) 200 IL/well (5 mg/mL) followed by addition of 0.5 % MTT. After an incubation period of 48 h, 0.04 M HCI/isopropanol was added. The proportion of remaining viable cells was determined using an ultraviolet-visible (UV-Vis) spectrophotometer to measure the absorbance at 570 nm.

RESULTS

XRD spectrum of ZnO NPs

XRD results showed that ZnO NPs were present in wurtzite form, in agreement with the Joint Committee Powder Diffraction Standards (JCPDS) 89-7102 illustrated in Figure 1 [18-20]. The average size of the crystals was 25 nm.

FT-IR spectrum of the ZnO NPs

The functional groups responsible for the conversion of metal precursors into metal NPs were identified using FT-IR analysis. The ZnO NPs were compared to TPALE. The peak at 1450–1500 cm⁻¹ corresponds to N–H stretching vibrations. ZnO NP stretching was identified at 400–800 cm⁻¹, O-H stretching at 3433 cm⁻¹, and aldehyde C–H stretching at 2934 cm⁻¹. A protein peak was observed at 1250 – 1270 cm⁻¹; thus, the ZnO NPs were covered with a layer of primary and secondary metabolites, i.e., proteins and functional groups, as illustrated in Figure 2 [21].

Figure 1: Zinc oxide nanoparticles (ZnO NPs) X-ray diffraction spectrum

Figure 2: Fourier transform infrared spectra of Tradescantia pallida aqueous leaf extract and ZnO NPs

Morphological and EDAX analysis

Morphological analyses were performed using SEM and TEM to identify the size and structure of the TPALE-mediated synthesized ZnO NPs. The resulting agglomerated particles were rod-shaped and had a size of 25 ± 2 nm, as illustrated in (Figure 3A–D). The EDAX spectrum shows that Zn and O were present in proportions of 83 % and 17 % respectively, as shown in Figure 4.

Photoluminescence of ZnO NPs

Fluorescence spectroscopy results of the ZnO NPs showed three color bands, namely, red, blue and green. Absorbance occurred at 447, 402, and 469 nm, corresponding to the blue bands, and 483 nm corresponding to the green band. The blue bands were caused by defects in the ZnO crystals, and the green band was caused by the oxygen transition vacancy, as shown in Figure 5. [22,23].

Figure 3: (A) ZnO NP scanning electron microscopy (SEM) image, (B) ZnO (SEM) particle size histogram, (C) ZnO NP transmission electron microscopy (TEM) image, and (D) ZnO NP (TEM) particle size histogram

Figure 4: Energy dispersive X-ray analysis of ZnO NPs

Figure 5: Photoluminescence spectrum of ZnO NPs

Cytotoxicity activity

The cytotoxicity assay results showed that 98.9 % of the cancer cells died after being subjected to a high dose 1000 μ g/mL of ZnO NPs. We determined the concentration required for 50 % inhibition of viability (IC₅₀) graphically. The IC₅₀ of ZnO NPs was 62.5 μ g/mL for the HeLa cervical cancer cell line. Cells from the HeLa cell line were treated with various concentrations of ZnO NPs for 48 h. UV-visible spectroscopy was used to determine the proportion of live cells. The absorbance peak at 570 nm is clearly shown in Figure 6 [18].

Figure 6: Methyl thiazolyldiphenyl-tetrazolium bromide assay against HeLa cell line

DISCUSSION

There has been great interest in NP synthesis based on plants, as there are several drawbacks to physical- and chemical-mediated NP synthesis. TPALE has not been used previously to synthesize NPs. Here, we synthesized ZnO NPs using TPALE and conducted cytotoxicity tests against HeLa cells. The ZnO NPs had a size of 25 nm and an agglomerated rod shape.

The present results indicate that TPALEmediated ZnO NPs are toxic to HeLa cells, killing 98.9 % of the cancer cells when a high dose of 1000 µg/mL was used. The concentration required for IC₅₀, determined via graphic interpolation, was 62.5 µg/mL for the HeLa cervical cancer cell line. There are several existing reports detailing the green synthesis of ZnO NPs from plant sources. These sources include Citrus aurantifolia peel, which resulted in prism-shaped particles with an average size of 35 nm [24], Vitex negundo L. extract, Caralluma fimbriata, and Euphorbia Jatropa latex [25,26]; however, few reports detail cytotoxicity assay and photoluminescence investigations of greensynthesized ZnO NPs. In future studies, it is intended that a simpler method to synthesize ZnO NPs will be developed. Such a method would serve as a reference for researchers to develop other methods to ecologically synthesize metal NPs for potential application as treatments for various medical disorders.

CONCLUSION

A simple approach for ZnO NP synthesis based on TPALE has been developed successfully. The mean particle size of the ZnO NPs was 25 nm, and the final product consisted of agglomerated rod-shaped particles. The synthesized nanoparticles demonstrate good luminescence properties. Cytotoxicity results against cervical cancer lines indicate 98.9 % of cancer cells died after exposure to a dose of 1000 $\mu\text{g/mL}$ ZnO NPs.

DECLARATIONS

Acknowledgement

The authors acknowledge the funds and lab facilities provided for this research by the 117th Hospital of the Chinese People's Liberation Army, Hang Zhou.

Conflict of Interest

No conflict of interest associated with this work.

Contribution of Authors

The authors declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by them.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by /4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/rea d), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

REFERENCES

- Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spetrochim. Acta A 2015; 143: 158-164.
- Suresh D, Nethravathi PC, Udhayabanu, Rajanaika H, Nagabushana H, Sharma SC. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Proces 2015; 31: 446-454.
- 3. Camelia CHIMPAN, Monica SIPOS. Anatomy of the vegetative organs of Tradescantia pallida purpurea. Biharean Biol 2009; 3: 1-4.
- 4. Paiva EAS, Santos Isaias RM, Vale FHA, Senna-Queiroz CG. The influence of light intensity on anatomical structure and pigment contents of Tradescantia pallida (Rose) Hunt. cv. purpurea Boom (Commelinaceae) leaves. Braz Archiv Biol Tech 2003; 46: 617-624.

- Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F. Human safety review of "nano" titanium dioxide and zinc oxide. Photochem Photobiol Sci 2015; 9: 495-509.
- Gerloff K, Fenoglio E, Carella I, Kolling J, Albercht C, Boots A, Forster I, Schins RP. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 2012; 25: 646-655.
- Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 2009; 74: 46-52.
- He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 2011; 166: 207-215.
- Abdul SH, Sivaraj R, Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from ocimum basilicum I. var. Purpurascens benth.lamiaceae leaf extract. Mater Lett 2014; 13: 16-18.
- Prabakar K, Kim H. Growth control of ZnO nanorod density by solegel method. Thin Solid Films 2010; 518: 136-138.
- Ramesh M, Anubuvannan M, Viruthagiri G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A 2015; 136: 864-870.
- Bai H, Liu X. Green hydrothermal synthesis and photoluminescence property of ZnO2 nanoparticles. Mater Lett 2010; 64: 341-343.
- Christine SS, Ingo S, Peter S, Uwe K, Heinz-Peter S, Dirk L. Mitochondrial haplogroups and expression studies of commonly used human cell lines. Mitochondrion 2016; 30: 236–247.
- Lokina S, Suresh R, Giribabu K, Stephen A, Lakshmi Sundaram R, Narayanan V Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles Spectrochim. Acta A 2014; 129: 484–490.
- Johan MR, Chong LC, Hamizi NA. Bayesian Neural Networks Model for Ionic Conductivity of Nanocomposite Solid Polymer Electrolyte System (PEO - LiCF3SO3 – DBP - ZrO2) 2012; 7: 4567-4573.
- Huang J, Yu P, Yuan CT, Ko HC, Tang J, Hseih TS. Single-particle studies of the plasmonic fluorescence in gold nanocubes. J Nanophotonics 2012; 6: 1-6.
- Lokina S, Suresh R, Giribabu K, Stephen A, Lakshmi RS, Narayanan V. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles. Spectrochim Acta A 2014; 129: 484-490.
- Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin 2011; 46: 2560-2566.

- Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloid Surf B 2012; 94: 143-150.
- 20. Goldsmith JA, Ross SD. Factors affecting the infra-red spectra of planar anions with D3h symmetry—II The intensity of v1 in some simple, basic and complex carbonates. Spectrochim Acta 1966; 22: 1069-1072.
- Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE. Mechanisms behind green photoluminescence in ZnO phosphor powders. Appl Phys 1996; 79: 79-83.
- 22. Shim ES, Kang HS, Pang SS, Kang JS, Yun I, Lee SY. Annealing effect on the structural and optical properties of ZnO thin film on InP. Mater Sci Engg B 2003; 102: 366-369.
- 23. Nagajyothi PC, MinhAn TN, Sreekanth TVM, Lee J, Lee DJ, Lee KD. Green route biosynthesis: Characterization

and catalytic activity of ZnO nanoparticles. Mater Lett 2013; 108: 160-163.

- 24. Ambika S, Sundararajan M. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: Spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J Photochem Photobiol B 2015; 149: 143-148.
- 25. Mishra P, Singh YP, Nagaswarupa HP, Sharma SC, Vidya YS, Prashantha SC, Nagabhushana H, Ananatharaju KS, Sharma S, Renuka L. Caralluma fimbriata extract induced green synthesis, structural, optical and photocatalytic properties of ZnO nanostructure modified with Gd. J Alloy Comp 2016; 685: 656-669.
- 26. Geetha MS, Nagabhushana H, Shivananjaiah HN. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater Dev 2016; 1: 301-310.