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Abstract 
Purpose: To investigate the antibacterial and α-glucosidase inhibitory activities of hydrazone 
derivatives (8a-h) of ethyl isonipecotate. 
Methods: The reaction of ethyl isonipecotate (2) with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride 
(1) in an aqueous basic medium yielded ethyl 1-[(3,5-dichloro-2-hydroxyphenyl)sulfonyl]piperidin-4-
carboxylate (3). Compound 3 was subsequently converted to ethyl 1-[(3,5-dichloro-2-
ethoxyphenyl)sulfonyl]piperidin-4-carboxylate (5) via O-alkylation. Compound 5 on reaction with 
hydrated hydrazine yielded 1-[(3,5-dichloro-2-ethoxyphenyl)sulfonyl]piperidin-4-carbohyrazide (6) in 
MeOH. Target compounds 8a-h were synthesized by stirring 6 with different aromatic aldehydes (7a-h) 
in MeOH. All the synthesized compounds were structurally elucidated by proton nuclear magnetic 
resonance (1H-NMR), electron impact mass spectrometry (EI-MS) and infrared (IR) spectroscopy. For 
antibacterial activity, solutions of the synthesized compounds were mixed with bacterial strains, and the 
change in absorbance before and after incubation was determined. For enzyme inhibitory activity, 
change in the absorbance of mixtures of synthesized compounds and enzyme before and after 
incubation with substrate was determined. 
Results: The target compounds were synthesized in appreciable yields and well characterized by 
spectral data analysis. Salmonella typhi was inhibited by 8e (MIC 8.00 ± 0.54 µM), Escherichia coli by 8f 
(8.21 ± 0.83 µM), Bacillus subtilis by 8c (8.56 ± 0.63 µM) and Staphylococcus aureus by 8c (8.86 ± 0.29 
µM). Two compounds, 8e and 8d, were very effective inhibitors of α-glucosidase with IC50 values of 
40.62 ± 0.07 and 48.64 ± 0.08 µM, respectively. 
Conclusion: Low IC50 values of the synthesized compounds against α-glucosidase demonstrates their 
potential in type-2 diabetes treatment. Furthermore, these compounds exhibit substantial antibacterial 
activity against the bacterial strains tested.  
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INTRODUCTION 
 
The labile lone pair of nitrogens in hydrazones is 
known to play an active role in the bioactivity and 

chemical reactivity of this class of compounds 
[1,2]. These compounds have been shown to 
have anti-tuberculosis [3], antimicrobial [4], 
antimycotic [5] and antihypertensive activities [6]. 
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Furthermore, industrial chemistry has found 
many applications for hydrazones [7-9]. α-
Glucosidase (EC 3.2.1.20) is an enzyme that 
acts on 1,4-alpha bonds [10,11].  
 
The cleavage of carbohydrates is delayed by α-
glucosidase inhibitors (AGI) in the small intestine 
[12,13]. In search of bioactive compounds, an 
attempt was made to synthesize some new 
hydrazones bearing a sulfamoyl moiety. 
 
EXPERIMENTAL  
 
All chemical reagents were from Merck, Sigma 
Aldrich and Alfa Aesar and purchased through 
local suppliers, and they were used without 
further purification. Purity of the synthesized 
compounds was assured by thin layer 
chromatography (TLC); the plates were 
developed with n-hexane and ethyl acetate 
solvent systems and visualized under UV at 254 
nm and also by spraying with ceric sulfate 
solution.  
 
The melting points of all synthesized compounds 
were determined using open capillary tubes on a 
Griffin and George apparatus. IR spectra were 
recorded using the potassium bromide pellet 
method on a Jasco-320-A spectrophotometer 
with wave number in cm-1. 1H-NMR spectra were 
recorded in CDCl3 on a Bruker spectrometer 
operating at 400 MHz. Chemical shift values are 
reported in ppm (δ) units taking TMS as 
reference and the coupling constants (J) are in 
Hz. Mass spectra (EIMS) were recorded on a 
JMS-HX-110 spectrometer. 
 
Procedure for synthesis of sulfonamide (3) in 
aqueous medium 
 
Ethyl isonipecotate (6.49 mmol; 1 mL, 2) was 
added to a 100-mL round-bottom flask containing 
15 mL basic aqueous medium prepared by 
addition of aqueous Na2CO3 with pH adjusted to 
8-9. Next, 3,5-dichloro-2-hydroxybenzenesulfo-
nylchloride (6.49 mmol; 1.698 g, 1) was gradually 
added to the reaction flask over 5-10 min. The 
reaction mixture was stirred for 6-8 h with pH 
maintained at 8-9 at ambient temperature. The 
completion of the reaction was checked by TLC 
until confirmed by a single spot. Product 3 was 
collected by acidifying the reaction mixture with 
dilute HCl to bring the pH to 5-7. The synthesized 
product was collected by filtration, washed with 
distilled water and dried for next use. 
 

Procedure for synthesis of O-alkyl derivative 
(5) 
 
Compound 3 (0.5249 mmol, 0.2 g) was dissolved 
in DMF (5 mL) in a 100-mL round-bottom flask. 
Solid KOH (0.5249 mmol, 0.0293 g) was added 
to activate the O-substitution. Ethyl iodide 
(0.5249 mmol; 42.2 µL, 4) was then added, and 
the mixture was stirred for 2-3 h at 60 ºC. 
Completion of the reaction was confirmed by 
TLC showing a single spot. Chilled distilled water 
was used to collect the precipitates of pure 
product 5. Precipitates were filtered, washed with 
distilled water and dried. 
 
Procedure for synthesis of carbohydrazide (6) 
 
Compound 5 (1.467 mmol, 0.6 g) was dissolved 
in MeOH (5-10 mL) in a 100-mL round-bottom 
flask and stirred for 2-5 min. Hydrazine hydrate 
(1.467 mmol) was then added and the reaction 
mixture was refluxed for 6 h. There was a color 
change in the reaction mixture from orange-
yellow to grey as the reaction proceeded toward 
completion. The progress of the reaction was 
followed by TLC. After reaction completion, the 
mixture was quenched with cold distilled water 
and the precipitates of 6 were filtered, washed 
with distilled water and dried for further use. 
 
General procedure for synthesis of various 
hydrazone derivatives (8a-h) 
 
A methanolic solution of compound 6 (0.2523 
mmol, 0.1 g) was placed in a 50-mL round-
bottom flask and stirred at room temperature. 
Aromatic aldehydes (7a-h) were introduced in 
equimolar ratios to produce hydrazone 
derivatives. The reaction duration for different 
aldehydes varied 2-3 h. Reaction completion was 
confirmed by TLC, and distilled water was added 
to the mixture to precipitate the compounds 
synthesized, 8a-h, which were filtered, washed 
with distilled water and dried. 
 
Evaluation of antibacterial activity 
 
The broth microdilution method was employed to 
test for antibacterial activity [14]. The solutions of 
synthesized compounds were mixed with 
bacterial strains and change in absorbance 
before and after incubation was determined. 
 
α-Glucosidase assay 
 
α-Glucosidase inhibitory activity was determined 
as previously described, with slight modification 
[15].  
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Scheme 1: Synthetic scheme for hydrazone derivatives of 1-[(3,5-dichloro-2-ethoxyphenyl)sulfonyl]piperdine-4-
carbohydrazide 
 
Enzyme activity was based   on the difference in 
absorbance of the mixture of synthesized 
compounds and enzyme before and after 
incubation with substrate. 
 
Molecular docking study 
 
The crystallographic structure of Saccharomyces 
cerevisiae isomaltase (PDB code 3AJ7; 
resolution 1.30 Å) showing 72.4 % sequence 
identity with the target was selected as a 
template. The 3D structure of α-glucosidase for 
Saccharomyces cerevisiae was predicted using 
the Molecular Operating Environment (MOE 
2010.11) software package. MOE docking 
program was used to analyze the binding modes 
of the ligands with the protein molecule. The best 

conformations were analyzed for hydrogen 
bonding and π-π interactions [16-18]. 
 
Statistical analysis  
 
The results are presented as mean ± SEM (n = 
3) and were analyzed by Microsoft Excel 2010. 
The results for 50 % inhibitory concentration 
(IC50) and minimum inhibitory concentration 
(MIC) were obtained at different dilutions (5 - 30 
µg/well) and analyzed by EZ-Fit software 
(Perrella Scientific Inc., Amherst, USA).  
 
RESULTS  
 
1-(3,5-Dichloro-2-ethoxybenzenesulfonyl)-N′-
(arylidene)piperidin-4-carbohydrazides, 8a-h, 
were prepared according to the protocol 
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described in Scheme  1. The synthesized 
compounds exhibited substantial α-glucosidase 
inhibitory activity and antibacterial activity.  
 
Ethyl 1-[(3,5-dichloro-2-hydroxyphenyl)sulfo-
nyl]piperidin-4-carboxylate (3) 
 
White powder; Yield: 87 %; IR (KBr): υmax: 3247 
(O-H), 3110 (Ar-H), 2860 (C-H), 1750 (>C=O ), 
1610 (Aromatic C=C), 1386 (-SO2); 1H-NMR (400 
MHz, CDCl3): δ 8.92 (s, 1H, HO-2'), 7.77 (d, J = 
2.8 Hz, 1H, H-6'), 7.55 (d, J = 2.4 Hz, 1H, H-4'), 
4.12 (q, J = 6.8 Hz, 2H, H-7), 3.80-3.77 (m, 2H, 
He-2 & He-6), 3.34-3.04 (m, 1H, H-4), 2.88-2.83 
(m, 2H, Ha-2 & Ha-6), 2.05-1.96 (m, 2H, He-3 & 
He-5), 1.86-1.77 (m, 2H, Ha-3 & Ha-5), 1.47 (t, J = 
6.8 Hz, 3H, H-8); EIMS: m/z 381 [M]•+, 352 
[C12H12Cl2NO5S]+, 336 [C12H12Cl2NO4S]+, 308 
[C11H12Cl2NO3S]+, 224 [C7H6Cl2O3S]•+, 156 
[C8H14NO2]•+, 144 [C6H2Cl2]•+, 111 [C6H9NO]•+, 83 
[C5H9N]+.  
 
Ethyl 1-[(3,5-dichloro-2-ethoxyphenyl)sulfo-
nyl]piperidin-4-carboxylate (5)  
 
White powder; Yield: 80 %; IR (KBr): υmax: 3045 
(Ar-H), 2975 (C-H), 1617 (Aromatic C=C), 1369 
(-SO2), 1170 (C-O-C); 1H-NMR (400 MHz, 
CDCl3): δ 7.79 (d, J = 2.8 Hz, 1H, H-6'), 7.53 (d, 
J =  2.4 Hz, 1H, H-4'), 4.22 (q, J = 6.8 Hz, 2H, H-
7'), 3.88 (q, J = 6.4 Hz, 2H, H-7), 3.82-3.57 (m, 
2H, He-2 & He-6), 2.32-2.04 (m, 1H, H-4), 2.77-
2.73 (m, 2H, Ha-2 & Ha-6 ), 2.10-1.96 (m, 2H, He-
3 & He-5), 1.80-1.72 (m, 2H, Ha-3 & Ha-5), 1.42 
(t, J = 6.8 Hz, 3H, H-8'), 1.31 (t, J = 6.4 Hz, 3H, 
H-8); EIMS: m/z 409 [M]•+, 380 [C14H16Cl2NO5S]+, 
364 [C14H16Cl2NO4S]+, 336 [C13H16Cl2NO3S]+, 
188 [C8H7Cl2O]•+, 156 [C8H14NO2]+, 144 
[C6H2Cl2]•+, 111 [C6H9NO]•+, 83 [C5H9N]•+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl) 
piperidin-4-carbohydrazide (6)  
 
Grey powder; Yield: 79 %; IR (KBr): υmax: 3332 
(CON-H), 3029 (Ar-H), 1639 (>C=O), 1610 
(Aromatic C=C), 1378 (-SO2), 1159 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ 8.37 (br s, CON-H), 
7.77 (d, J = 2.8 Hz, 1H, H-6'), 7.56 (d, J =  2.4 
Hz, 1H, H-4'), 3.88 (q, J = 6.4 Hz, 2H, H-7'), 
3.81-3.77 (m, 2H, He-2 & He-6), 2.88-2.83 (m, 
1H, H-4), 2.67-2.53 (m, 2H, Ha-2 & Ha-6), 2.05-
1.96 (m, 2H, He-3 & He-5), 1.86-1.77 (m, 2H, Ha-
3 & Ha-5), 1.47 (t, J = 7.2 Hz, 3H, H-8'); EIMS: 
m/z 395 [M]•+, 365 [C14H17Cl2NO4S]•+, 364 
[C14H16Cl2NO4S]+, 336 [C13H16Cl2NO3S]+, 142 
[C6H12N3O]+, 111 [C6H9NO] +, 83 [C5H9N]+. 
 

1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-(4-
methoxybenzylidene)piperidin-4-carbohydra-
zide (8a) 
 
White powder; Yield: 96 %; IR (KBr): υmax: 3025 
(Ar-H stretching), 2869 (C-H), 1678 (C=N), 1508 
(Aromatic C=C), 1360 (-SO2), 1162 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ 8.47 (br s, 1H, CONH 
), 8.38 (s, 1H, H-7''), 7.80 (d, J = 2.7 Hz, 1H, H-
6'), 7.58 (d, J = 2.5 Hz, 1H, H-4'), 7.71 (d, J = 8.2 
Hz, 2H, H-2'' & H-6''), 7.21 (d, J = 8.4 Hz, 2H, H-
3'' & H-5''), 4.23 (q, J = 6.4 Hz, H-7'), 3.81 (s, 3H, 
OCH3-8''), 3.89-3.84 (m, 2H, He-2 & He-6), 3.36-
3.20 (m, 1H, H-4), 2.86-2.80 (m, 2H, Ha-2 & Ha-
6), 1.96-1.80 (m, 4H, H-3 & H-5), 1.43 (t, J = 6.4 
Hz, 3H, H-8'); EIMS: m/z 513 [M]•+, 379 
[C14H17Cl2N2O4S]+, 364 [C14H16Cl2NO4S]+, 336 
[C13H16Cl2NO3S]+, 260 [C14H18N3O2]•+, 147 
[C5H9NO2S]+, 134 [C8H8NO2]•+,  107 [C7H7O]•+, 
83 [C5H9N] •+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-(4-
hydroxybenzylidene)piperidin-4-carbohydra-
zide (8b)  
 
Off-white powder; Yield: 96 %; IR (KBr): υmax: 
3135 (Ar-H), 2892 (C-H), 1680 (C=N), 1588 
(Aromatic C=C), 1395 (-SO2), 1134 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ9.95 (br s, 1H, CONH 
), 9.93 (s, 1H, OH-8''), 8.29 (s, 1H, H-7''), 7.90 (d, 
J = 2.8 Hz, 1H, H-6'), 7.83 (d, J = 2.4 Hz, 1H, H-
4'), 7.51 (d, J = 8.8 Hz, 2H, H-2'' & H-6''), 6.80 (d, 
J = 8.4 Hz, 2H, H-3'' & H-5''), 4.23 (q, J = 6.5 Hz, 
2H, H-7'), 3.68-3.56 (m, 2H, He-2 & He-6 ), 3.42-
3.20 (m, 1H, H-4 ), 2.86-2.82 (dt, J = 11.2 Hz, 
2H, Ha-2 & Ha-6 ), 1.95-1.84 (m, 4H, He-3 & He-5, 
Ha-3 & Ha-5), 1.43 (t, J = 3.2 Hz, 3H, H-8'); EIMS: 
m/z 499 [M]+, 379 [C14H17Cl2N2O4S]+, 336 
[C13H16Cl2NO3S]+, 246 [C13H16N3O2]+, 252 
[C8H7Cl2O3S]•+, 163 [C8H7N2O2]•+, 120 [C7H6NO]+ 
, 118 [C8H8N]•+,  83 [C5H9N]+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-(3-
nitrobenzylidene)piperidin-4-carbohydrazide 
(8c)  
 
White powder; Yield: 96 %; IR (KBr): υmax: 3015 
(Ar-H), 2910 (C-H), 1645 (C=N), 1598 (Aromatic 
C=C), 1406 (-SO2), 1122 (C-O-C); 1H-NMR (400 
MHz, CDCl3): δ  8.71 (s, 1H, H-2''), 8.32 (dd, J = 
8.4, 1.6 Hz, 1H, H-4''), 8.30 (s, 1H, H-7''), 7.94 (d, 
J = 7.6 Hz, 1H, H-6''), 7.80 (d, J =  2.8 Hz, 1H, H-
6'), 7.72 (t, J = 8.0 Hz, 1H, H-5''), 7.58 (d, J = 
2.4Hz, 1H, H-4'), 4.24 (q, J = 6.4 Hz, 2H, H-7'), 
3.69-3.56 (m, He-2 & He-6), 3.40-3.20 (m, 1H, H-
4), 2.90-2.86 (m, 2H, Ha-2 & Ha-6 ), 1.96-1.88 (m, 
4H, H-3 & H-5), 1.46 (t, J = 6.4 Hz, 3H, H-8'); 
EIMS: m/z 528 [M]•+, 379 [C14H17Cl2N2O4S]+, 364 
[C14H17Cl2NO4S]•+, 336 [C13H16Cl2NO3S]+, 275 
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[C13H15N4O3]•+, 149[C7H5N2O2]•+, 126[C6H10N2O]+,  
83 [C5H9N]+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-
(2,4-dichlorobenzylidene)piperidin-4-
carbohydrazide (8d)  
 
White powder; Yield: 96 %; IR (KBr): υmax: 3035 
(Ar-H), 2967 (C-H), 1635 (C=N), 1595 (Aromatic 
C=C), 1425 (-SO2), 1112 (C-O-C); 1H-NMR (400 
MHz, CDCl3): δ  8.41 (s, 1H, H-7''), 7.80 (d, J =  
2.8 Hz, 1H, H-6'), 7.58 (d, J = 8.0 Hz, 1H, H-6''), 
7.57 (dd, J = 8.0, 2.0 Hz, 1H, H-5''), 7.55 (d, J = 
2.4 Hz, 1H, H-4'), 7.32 (d, J = 2.0 Hz, 1H, H-3''), 
4.23 (q, J = 6.4 Hz, 2H, H-7'), 3.69-3.56 (m, 2H, 
He-2 & He-6), 3.40-3.20 (m, 1H, H-4), 2.86-2.80 
(m, 2H, Ha-2 & Ha-6 ), 1.96-1.84 (m, 4H, H-3 & H-
5), 1.43 (t, J = 6.8 Hz, 3H, H-8'); EIMS: m/z 551 
[M]•+, 379 [C14H17Cl2N2O4S]•+, 364 
[C14H17Cl2NO4S]•+, 336 [C13H16Cl2NO3S]+, 298 
[C13H14Cl2N3O] •+, 172 [C7H4Cl2O]•+, 145 
[C6H3Cl2]•+, 126 [C6H10N2O]+ , 83 [C5H9N]+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-(2-
hydroxybenzylidene)piperidin-4-
carbohydrazide (8e)  
 
Off white powder; Yield: 99 %; IR (KBr): υmax: 
3135 (Ar-H), 2892 (C-H), 1680 (C=N), 1588 
(Aromatic C=C), 1395 (-SO2), 1134 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ 8.59 (s, 1H, OH-8''), 
8.54 (s, 1H, H-7''), 7.90 (d, J = 2.8 Hz, 1H, H-6'), 
7.81 (d, J = 7.6 Hz, 1H, H-6''), 7.56 (d, J = 2.4 
Hz, 1H, H-4'), 7.53 (dd, J = 7.6, 1.6 Hz, 1H, H-
3''), 7.23 (dt, J = 7.6, 2.0 Hz, 1H, H-4''), 6.90 (dt, 
J = 7.6, 2.0 Hz, 1H, H-5''), 4.22 (q, J = 6.8 Hz, 
2H, H-7'), 3.69-3.56 (m, 2H, He-2 & He-6), 3.40-
3.22 (m, 1H, H-4), 2.86-2.78 (m, 2H, Ha-2 & Ha-
6), 1.96-1.74 (m, 4H, H-3 & H-5), 1.43 (t,J = 6.4 
Hz, 3H, H-8'); EIMS: m/z 499 [M]•+, 379 
[C14H17Cl2N2O4S]•+, 364 [C14H17Cl2NO4S]•+, 336 
[C13H16Cl2NO3S]+, 246 [C13H16N3O2]+, 120 
[C7H6NO]+ , 83 [C5H9N]+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-(4-
dimethylamino)benzylidene) piperidin-4-
carbohydrazide (8f)  
 
Off white powder; Yield: 100 %; IR (KBr): υmax: 
3128 (Ar-H), 3000 (C-H), 1665 (C=N), 1597 
(Aromatic C=C), 1405 (-SO2), 1102 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ 8.42 (s, 1H, H-7''), 
7.93 (d, J = 2.8 Hz, 1H, H-6'), 7.89 (d, J = 2.4 Hz, 
1H, H-4'), 7.35 (d, J = 8.4 Hz, 2H, H-2'' & H-6''), 
6.66 (d, J = 8.8 Hz, 2H, H-3'' & H-5''), 4.25 (q, J = 
6.8 Hz, 2H, H-7'), 3.02 (s, 6H, H-8'' & H-9''), 3.69-
3.56 (m, 2H, He-2 & He-6), 3.40-3.20 (m, 1H, H-
4), 2.86-2.80 (m, 2H, Ha-2 & Ha-6), 1.96-1.84 (m, 
4H, H-3 & H-5), 1.43 (t, J = 6.4 Hz, 3H, H-8'); EI-
MS: m/z 526 [M]•+, 379 [C14H17Cl2N2O4S]•+, 336 

[C13H16Cl2NO3S]+, 273[C15H21N4O]•+, 147 
[C9H11N2]+,  83 [C5H9N]+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-
(3,4-dimethoxybenzylidene)piperidine-4-
carbohydrazide (8g) 
 
Light grey powder; Yield: 96 %; IR (KBr): υmax: 
3075 (Ar-H), 2881 (C-H), 1664 (C=N), 1588 
(Aromatic C=C), 1395 (-SO2), 1145 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ 8.47 (br s, 1H, CONH 
), 8.41 (s, 1H, H-7''), 7.85 (d, J =  2.8 Hz, 1H, H-
6'), 7.78 (d, J = 2.4 Hz, 1H, H-4'), 7.54 (d, J = 1.6 
Hz, 1H, H-2''), 7.36 (dd, J = 8.4, 1.6 Hz, 1H, H-
6''), 7.03 (d, J = 8.4 Hz, 1H, H-5''), 4.23 (q, J = 
7.2 Hz, 2H, H-7'), 3.89 (s, 3H, OCH3-8''), 3.87 (s, 
3H, OCH3-9''), 3.79-3.56 (m, 2H, He-2 & He-6 ), 
3.40-3.20 (m, 1H, H-4 ), 2.86-2.80 (m, 2H, Ha-2 & 
Ha-6 ), 1.96-1.74 (m, 4H, H-3 & H-5), 1.43 (t, J = 
6.8 Hz, 3H, H-8'); EIMS: m/z 543 [M]•+, 379 
[C14H17Cl2N2O4S]+, 364 [C14H17Cl2NO4S]+, 336 
[C13H16Cl2NO3S]+, 290 [C15H20N3O3]+, 126 
[C9H10N2O]•+, 164 [C9H10NO2]•+, 147 
[C5H9NO2S]•+, 83 [C5H9N]+. 
 
1-(3,5-Dichloro-2-ethoxyphenylsulfonyl)-N′-(2-
nitrobenzylidene)piperidine-4-carbohydrazide 
(8h)  
 
Light green powder; Yield: 96 %; IR (KBr): υmax: 
3015 (Ar-H), 2910 (C-H), 1645 (C=N), 1598 
(Aromatic C=C), 1406 (-SO2), 1122 (C-O-C); 1H-
NMR (400 MHz, CDCl3): δ  8.47 (br s, 1H, CONH 
), 8.30 (s, 1H, H-7''), 8.03 (d, J = 8.0 Hz, 1H, H-
6''), 7.94 (d, J = 7.8 Hz, 1H, H-3''), 7.80 (d, J =  
2.8 Hz, 1H, H-6'), 7.58 (d, J = 2.4 Hz, 1H, H-4'), 
7.67-7.61 (m, 2H, H-4'' & H-5''), 4.03 (q, J = 6.8 
Hz, 2H, H-7'), 3.69-3.56 (m, He-2 & He-6 ), 3.40-
3.20 (m, 1H, H-4 ), 2.86-2.80 (m, 2H, Ha-2 & Ha-6 
), 1.96-1.84 (m, 4H, H-3 & H-5), 1.43 (t, J = 6.4 
Hz, 3H, H-8'); EI-MS: m/z 528 [M]•+, 379 
[C14H17Cl2N2O4S]+, 364 [C14H17Cl2NO4S]•+, 336 
[C13H16Cl2NO3S]+, 275 [C13H15N4O3]•+, 149 
[C7H5N2O2]•+, 126 [C6H10N2O]+,  83 [C5H9N]+. 
 
Biological studies 
 
The results for in vitro antibacterial activity 
against Salmonella typhi, Escherichia coli, 
Pseudomonas aeruginosa, Bacillus subtilis and 
Staphylococcus aureus are presented in Table 1 
and those for in vitro α-glucosidase inhibitory 
activity are presented in Table 2. 
 
Molecular docking  
 
With regard to hydroxyl-containing compounds 
(8b and 8e), the docking conformation of 8e 
(ortho analogue) showed good interaction 
network as well as good docking score compared 
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Table 1: Antibacterial activity of synthesized compounds 
 

Compound 
Inhibition (%) 

S. typhi (-) E. coli (-) P. aeruginosa (-
) B. subtilis (+) S. aureus (+) 

Inhibition (%)      
3 86.56±0.78 78.35±0.65 56.20±1.00 70.75±1.15 77.30±0.50 
5 81.33±0.67 75.95±0.75 33.00±0.20 70.55±0.25 71.65±0.55 
6 78.33±0.11 83.85±0.55 58.45±0.96 73.95±0.85 68.35±0.25 
8a 72.78±0.33 74.30±0.60 55.65±1.15 62.25±0.55 64.50±0.80 
8b 51.72±1.39 73.10±0.47 40.60±0.43 65.05±0.75 48.20±1.00 
8c 78.50±1.09 83.55±0.27 65.05±0.55 79.20±0.30 75.40±0.60 
8d 71.33±0.22 46.25±0.89 56.50±0.11 59.70±0.70 64.10±0.50 
8e 83.44±0.11 81.20±0.70 66.85±1.05 73.40±1.10 71.20±0.40 
8f 69.72±0.61 78.75±0.25 51.75±0.35 73.10±0.75 59.35±0.95 
8g 75.28±0.54 75.50±1.00 51.50±1.90 70.85±1.55 69.90±0.90 
8h 67.50±0.83 79.10±1.00 31.05±0.45 73.00±0.90 35.65±0.25 
Ciprofloxacin 92.87±0.91 92.27±0.64 92.34±0.35 91.63±0.05 90.57±0.35 

Minimum inhibitory concentration (MIC, μg/mL)   
3 7.99±0.86 8.31±0.05 15.78±0.69 9.79±0.86 8.43±0.79 
5 8.87±0.37 8.42±0.43 - 9.80±0.81 9.46±0.89 
6 8.38±0.53 8.05±0.52 14.79±0.86 9.22±0.65 9.24±0.69 
8a 9.32±1.09 9.11±0.77 15.84±0.58 14.68±0.57 10.75±1.00 
8b 17.98±0.82 9.39±0.64 - 12.08±0.58 - 
8c 8.96±0.68 8.79±0.37 10.68±0.76 8.56±0.63 8.86±0.29 
8d 9.89±0.58 - 16.98±0.89 13.86±0.84 10.47±0.80 
8e 8.00±0.54 8.64±0.47 10.12±0.58 9.48±0.89 9.54±0.89 
8f 9.41±0.63 8.21±0.83 17.89±0.59 9.20±0.89 13.65±0.87 
8g 9.01±0.90 8.43±0.65 17.98±0.78 9.75±0.98 9.90±0.87 
8h 10.00±0.79 8.26±0.48 - 9.01±0.58 - 
Ciprofloxacin 7.12±0.21 7.05±0.28 7.41±0.61 7.65±0.48 7.89±0.27 

Note: MIC (minimum inhibitory concentration) values of compounds were calculated using EZ–Fit Enzyme 
Kinetics software (Perella Scientific Inc. Amherst, USA). Results are expressed as mean ± SEM. 
 
Table 2: α-Glucosidase activity (% inhibition and IC50) 
of synthesized compounds 
 

Compound 
Inhibition 
(%) at 0.5 

mM 
IC50 (µM) 

3 94.81±0.28 187.57±0.12 
5 98.47±0.19 97.86±0.07 

6 85.73±0.23 312.82 
±0.15 

8a 24.62±0.12 - 
8b 83.76±0.11 90.81±0.02 
8c 11.91±0.14 - 
8d 97.71±0.12 48.64±0.08 
8e 98.57±0.18 40.62±0.07 
8f 95.41±0.29 94.32±0.03 
8g 83.76±0.11 342.72±0.12 
8h 7.45±0.16 - 
Acarbose 92.23±0.14 38.25±0.12 
IC50 (50% inhibitory concentration) values of 
compounds were calculated using EZ–Fit Enzyme 
Kinetics software (Perella Scientific Inc. Amherst, 
USA). Results are expressed as mean ± SEM 
 
to 8b (para analogue). The binding mode of 8e 
with a docking score of -10.4311 displayed two 
hydrogen bonds with Asn 241 and Asp 408, an 
arene-arene interaction with Phe 157 and arene-
arene interaction with Arg 312 residue of the 
enzyme (Figure 2a). Compound 8b with a 

docking score of -7.2386 established a hydrogen 
bond with Asn 241 and an arene-arene 
interaction with Phe 157 residue of the enzyme 
(Figure 2b). In case of dimethoxy substituted 
compound 8g, the docking conformation showed 
moderate interaction pattern.  
 
The two methoxy groups present at the meta and 
para position at adjacent carbon atoms displayed 
poor interaction, which might have been due to 
higher steric strain. The docking conformation of 
compound 8g showed two arene-arene 
interactions with Phe 157 and His 239 residues 
of the enzyme (Figure 2c). 
 
DISCUSSION 
 
The synthesis of compound 8a yielded a white 
powder. Its molecular formula, C22H25Cl2N3O5S, 
was determined by EI-MS with [M]+ at m/z 513; 
along with two distinct peaks at m/z 336 for 1-
[(3,5-dichloro-2-ethoxyphenyl)sulfonyl]piperidine-
4-yl cation and m/z 260 for base ion peak N′-(4-
methoxybenzylidene)piperidine-4-carbohydrazide 
-1-yl cation. The proposed fragmentation pattern 
is sketched in Figure - 1 for this compound. 
Characteristic bands appeared in the IR 
spectrum confirming the sulfonyl group (1360 cm- 
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Figure 1: Mass fragmentation pattern of 1-[(3,5-dichloro-2-ethoxyphenyl)sulfonyl]-N′-(4-methoxybenzy-
lidene)piperidin-4-carbohydrazide (8a) 
 

1) and –N=CH- (1678 cm-1). In the aromatic 
region of the 1H-NMR spectrum, two m-coupled 
signals of the phenylsulfonyl group with one 
proton integration, a J-value of 2.4 and 2.8 Hz, 
appeared at δ 7.58 (para proton to sulfonyl 
group) and δ 7.80 (ortho proton to sulfonyl 
group). The signals resonating at δ 7.71 (d, J = 
8.2 Hz, 2H, H-2'' & H-6'') and 7.21 (d, J = 8.4 Hz, 
2H, H-3'' & H-5'') were assigned to the para-
substituted benzene ring due to the large 
coupling constant and symmetry of the molecule. 
In the aliphatic section, the multiplets appearing 
at δ 3.89-3.84 (m, 2H, He-2 & He-6), 3.36-3.20 
(m, 1H, H-4), 2.86-2.80 (m, 2H, Ha-2 & Ha-6) and 
1.96-1.80 (m, 4H, H-3 & H-5) for nine protons 
were assigned to the piperidine ring. The two 
quartet and triplet signals at δ 4.23 (q, J = 6.4 
Hz, 2H, H-7') and δ 1.43 (t, J =6.4 Hz, 3H, H-8') 
were assigned to five protons of the ethoxy 
group, ortho to sulfonyl group. A chemical shift 

value at δ 3.81 was assigned to singlet of the 
methoxy group attached to one of the benzene 
rings. The singlet appearing at δ 8.38 (s, 1H, H-
7''), due to a downfield shift, was attributed to a 
proton of the imine group. The structure of 8a 
was substantiated and designated 1-[(3,5-
dichloro-2-ethoxyphenyl)sulfonyl]-N′-(4-methoxy-
benzylidene)piperidin-4-carbohyrazide. The 
structure of the other compounds was likewise 
established.  
 
The screening of all these synthesized 
compounds against Gram-positive and -negative 
bacterial strains showed potent antibacterial 
activity in all but a few. Compounds 8e and 8c 
exhibited good inhibition percentage and MIC 
values against all bacterial strains, possibly due 
to the presence of a 2-hydroxyphenyl and 3-
nitrophenyl group, respectively, in comparison to 
ciprofloxacin, taken as reference standard.  
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Figure 2: Binding models of compounds; (a): Compound 8e nicely binds to α-glucosidase through Asn 241 and 
Asp and two π-π interactions with Phe 157 and Arg 312. (b): Compound 8b binds well to α-glucosidase through 
Asn 241and one π-π interaction with Phe 157. (c): Compound 8g binds to α-glucosidase and shows two π-π 
interactions with Phe 157 and His 239 
 
Compounds 8a, 8b, 8d, 8f, 8g and 8h 
demonstrated good to moderate activity against 
both Gram-positive and -negative bacterial 
strains. S. typhi was best inhibited by molecule 3 
(ethyl ester) with a MIC of 7.99 ± 0.86 µM and 8e 
(bearing 2-hydroxyphenyl group) with a MIC of 
8.00 ± 0.54 µM relative to 7.12 ± 0.21 µM for 
ciprofloxacin. Against E. coli, molecule 6 
(carbohydrazide) with a MIC of 8.05 ± 0.52 µM 
and 8f (bearing a 4-(dimethylamino)phenyl 
group) with a MIC of 8.21 ± 0.83 µM were the 
most effective in comparison to 7.05 ± 0.28 µM 
for the reference. The synthesized compounds 
showed relatively moderate activity against B. 
subtilis with the lowest MIC for 8c (bearing a 3-
nitrophenyl group) at 8.56 ± 0.63 µM as 
compared to 7.65 ± 0.48 µM for the standard. 
The moderate to excellent activity against 
Staphylococcus aureus rendered 3 (ethyl ester) 
and 8c (bearing a 3-nitrophenyl group) the best 
ones with MIC values of 8.43 ± 0.79 and 8.86 ± 
0.29 µM in comparison to 7.89 ± 0.27 µM. 
 
Similarly, evaluation of α-glucosidase inhibitory 
activity of all synthesized compounds showed 
moderate activity except 8a, 8c and 8h, the 
inactive ones. Good activity was shown by 8e 
and 8d with respective IC50 values of 40.62 ± 
0.07 and 48.64 ± 0.08 µM in comparison to 38.25 

± 0.12 µM for acarbose, the positive control. The 
activity of 8e and 8d was probably due to the 
presence of a hydroxyl and chloro group in these 
compounds. Compounds 8b, 5 and 8f were less 
active, and 3, 6 and 8g had very low poorly 
active. However, 8a and 8b showed outstanding 
activity and could be further evaluated for the 
treatment of type-2 diabetes. 
 
CONCLUSION 
 
The biological activity data obtained demonstrate 
that the target compounds are significant 
inhibitors of bacterial growth and α-glucosidase 
activity. On the basis of the aforementioned 
results, these newly synthesized compounds 
may be further developed for the treatment of 
type-2 diabetes and bacterial infections.  
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