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Abstract 

Purpose: To investigate the effects of pre-cold stress treatments on subsequent acid stress resistance 
and the viability of Lactococcus lactis during acid fermentation. 
Methods: Bacterial strains were grown at 4 °C for 2 h pre-adaptation, and then subjected to various 
stresses including exposure to 4 °C, 1 mM hydrogen peroxide, 5 % sodium chloride, 7 % ethanol, and 
lactic acid (pH 5.5) to determine if any of these stress treatments could increase acid stress resistance 
and induce amino acid homeostasis during acid fermentation. 
Results: Among the different abiotic stresses investigated, pre-adaptation of lag-phase cultures to cold 
shock significantly enhanced cell survival during subsequent acid stress. The stress profile of L. lactis 
pre-adapted to cold stress revealed induction of amino acid homeostasis and energy balance; however, 
pre-adaptation responses are induced upon exposure to acid stress alone. Compared to exposure to 
acid stress only, pre-adaptation to cold stress decreased the redox balance ratio and the formation of 
hydroxyl radicals, indicating a change in aerobic respiration and oxidative state of the bacteria. 
Conclusion: Pre-adaptation to cold stress rescued L. lactis from the deleterious effects of subsequent 
acid exposure by modifying the amino acid metabolic pathway, leading to an improvement in redox 
mobility of acid stress response. 
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INTRODUCTION 
 
Lactic acid bacteria (LAB) are of great 
importance in the biotechnology and food 
industry. Lactococcus lactis has long been used 
as a starter to improve the stability of silages 
under aerobic conditions by acidifying the 
substrate, thereby reducing yeast and mould 
growth [1]. The development of new functional 
foods containing bioactive compounds such as 
probiotics and prebiotics is of great interest to the 
food industry and regulatory authorities, because 

in addition to their basic nutritional benefits, they 
have a significant impact on human health [2]. 
Therefore, LAB preservation is needed to obtain 
concentrated viable starters with stress 
tolerance. Several studies have demonstrated 
that during fermentation, decreased pH leads to 
bacterial cell damage and thus decreased 
viability [3]. However, because L. lactis grow in 
anaerobic environments, fermenting glucose 
differs in metabolism and production [4] and 
viability and metabolic activity during 
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fermentation are affected by stressful conditions 
[1,5].  
 
Several studies have shown that exposing 
bacteria to moderate stress activates functional 
and structural mechanisms that enhance their 
physiological resistance to subsequent stress [6]. 
LAB are exposed to various types of stress 
during the fermentation process such as low 
temperature [7], high hydrogen peroxide (H2O2) 
[8] and salt (NaCl) [4] levels, and low pH [9]. In 
virulent L. lactis strains, it has been 
demonstrated that pre-adaptation to sub-lethal 
acid conditions minimises the lethal effects of 
subsequent extreme-acid conditions by inducing 
the activation of amino acid metabolic pathways 
associated with intracellular pH homeostasis, 
resulting in enhancement of the acid tolerance 
response (ATR) system [10]. The association 
among various stressful conditions such as low 
temperature and low pH, physiological responses 
such as cell growth, and biochemical 
modifications such as the amino acid profile [6] 
and redox balance can be analysed by metabolic 
approaches. Improvements in the efficiency of 
technological processes to develop new 
functional food processes are increasingly 
required. Therefore, its is necessary to determine 
the pre-adaptation properties of salt, cold, acid, 
oxygen, and ethanol on the L. lactis NZ9000 
redox system balance, amino acid profile, and 
acid stress tolerance [3]. Changes in the ability of 
the ATR to protect L. lactis from various 
stressors have been determined by investigating 
how changes in amino acid metabolism during 
fermentation lead to altered bacterial metabolism 
and physiological function [1]. In this study, to 
evaluate the protective effects of pre-stress on 
bacterial growth and viability, cell recovery after 
exposure to various types of stressors at different 
pH was assessed through determination of 
amino acid homeostasis and redox mobility. 
 
EXPERIMENTAL 
 
Bacterial strains and growth conditions 
 
L. lactis ssp. cremoris NZ9000 was obtained 
from Professor Jian Chen (Key Laboratory of 
Industrial Biotechnology, Jiangnan University, 
Wuxi, China). The bacterial strain was grown 
statically at 30°C without aeration in M17 broth 
(Oxoid, Basingstoke, UK) supplemented with 5 
g/L glucose, unless otherwise stated. 
 
Stress treatments 
 
Log-phase cell cultures were centrifuged at 
5400×g for 7 min, and the resulting cell pellet 
was re-suspended in an equal volume of GM17 

medium. The cells were subjected to five types of 
stress: cold stress (4°C), oxidative stress (1 mM 
H2O2), osmotic stress (5 % NaCl), alcohol stress 
(7 % ethanol), and acid stress (pH 5.5 lactic 
acid). These conditions are within the range of 
conditions typically encountered by bacteria 
during food processing. For this study, these 
stressors were applied during a 2 h pre-
adaptation phase (shock) and then adjusted with 
lactic acid (pH 4.0) for 6 h (acid stress). Non-
stressed strains cultured in GM17 served as 
positive controls. Serial 10-fold dilutions of pre- 
and post-stress culture samples were plated to 
estimate the number of colony-forming units. At 
the end of the shock and stress treatments, the 
cultures were divided into two samples and 
centrifuged at 5400×g for 7 min. The first sample 
was subjected to further acid stress at pH 5.5, 
4.5, and 3.5 and incubated at 30 °C for 6 h. The 
second sample served as the assay control. 
 
Quantification of the nicotinamide nucleotide 
ratio 
 
The nicotinamide nucleotide ratio (NAD+/NADH) 
was determined using the BioVision NAD+/NADH 
Quantification Kit (Research Products, Milpitas, 
CA, USA) according to the manufacturer’s 
instructions. Bacterial suspensions were 
centrifuged at 6000×g for 7 min. The pellets were 
washed twice with cold sterile phosphate-
buffered saline (PBS, pH 7.2), centrifuged at 
8000×g for 3 min, and lysed using 334 μg 
microbeads (106 μm in diameter) in a Mini-
Beadbeater (Sigma, St. Louis, MO, USA). 
Samples were centrifuged at 14,000×g for 5 min 
to obtain clear supernatant. The protein 
concentration of the supernatant was determined 
[11] and the NAD+/NADH measurements were 
normalised to protein quantity. 
 
Hydroxyl radical measurement 
 
Hydroxyl radical (OH·) levels were measured 
using hydroxyphenyl fluorescein (HPF) as 
previously described [12]. Bacterial cultures were 
centrifuged at 8400×g for 4 min at 4°C, washed 
twice with an equal volume of sterile PBS, and 
centrifuged at 8000×g for 3 min. Positive control 
bacteria were treated with H2O2 (25 mM) and 
negative control bacteria were untreated. For the 
measurements, all of the samples were first 
diluted to a concentration of 106 bacteria/mL, 
after which HPF was added to a final 
concentration of 10 μM per reaction mixture [13]. 
The solutions were incubated at 20°C for 75 min 
in the dark. Fluorescence was measured using a 
DTX 880 multimode detector (Beckman Coulter, 
Brea, CA, USA) at an excitation wavelength of 
460 nm and an emission wavelength of 520 nm. 
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Determination of intracellular amino acid 
content 
 
Bacterial cells were grown to mid-log phase in 
GM17 culture medium for a 2 h pre-cold stress 
treatment at 4°C, followed by stress treatment. 
The cells were collected by centrifugation at 
8000×g for 8 min and then washed twice in 
sterile distilled water. The collected cells were 
suspended in 0.5 N perchloric acid and disrupted 
with glass beads. The homogenate was kept on 
ice for 15 min and centrifuged to obtain the 
supernatant. The pH of the supernatant was 
adjusted to 2.0 using lithium hydroxide and then 
kept on ice for 15 min. The sample was 
centrifuged to remove the precipitate. The 
concentration of free amino acids was quantified 
using a Hitachi L-8900 amino acid analyser 
(Hitachi, Tokyo). 
 
Statistical analysis 
 
Data were subjected to statistical analysis 
(Student’s t-test) using SPSS software version 
16.0 (SPSS, Chicago, IL, USA). The data are 
expressed as mean ± standard deviation (SD) 
and p < 0.05 was considered statistically 
significant. 
 
RESULTS 
 
Stress tolerance and survival rate of L. lactis 
subjected to multiple stressors 
 
The response of L. lactis to 8 h of acid-, cold-, 
osmotic-, peroxide- and ethanol-induced stress is 
presented in Figure 1. Acid, cold, and osmotic 
stress significantly decreased L. lactis survival. 
As shown in Figure 1, L. lactis treated with cold, 
lactic acid and salt conditions for 8 h had higher 
survival rates than control bacteria. 
 

 
 
Figure 1: Survival rate of L. lactis after stress 
treatments. Survival rate of L. lactis after no stress 
(none) and lactic acid pH 5.5 (acid), 4 °C (cold), 5 % 
NaCl (osmotic), 1 mM H2O2 (peroxide) and 7 % 
ethanol stress for 8 h, (n = 3) 

 
Stress tolerance and survival rate of L. lactis 
subjected to various pre-stressors and 
subsequent acid stress 
 
Pre-adaptation to acid, cold, and osmotic shock 
significantly reduced cell survival during 
subsequent acid stress exposure (Figure 2). 
Conversely, pre-adaptation of L. lactis to cold (4 
°C), osmotic (5 % NaCl), and acid (pH 5.5) shock 
resulted in a significant increase in survival 
following acid stress compared to the control. 
Pre-stress conditions followed by acid stress (pH 
4.0) decreased the stress tolerance of L. lactis 
relative to those subjected to acid stress alone. 
In addition, pre-cold (4 °C), lactic acid (pH 5.5), 
and salt (5 % NaCl) stress significantly increased 
the cell survival rate (Figure 2). Significant 
differences in cell biomass were observed 
between pre-cold stress shock cultures and 
subsequent acid stress cultures. 
 

 
 
Figure 2: Survival rate after shock and subsequent 
stress treatment. Survival of L. lactis after pre-
adaptation to no stress (N), lactic acid pH 5.5 (acid), 4 
°C (cold), 5 % NaCl (osmotic), 1 mM H2O2 (peroxide) 
and 7 % ethanol stress for 2 h and then exposure to 
pH 4.0 acid stress for 6 h (n = 3) 
 
Oxidative performance 
 
Pre-adaptation to cold or osmotic stress alone 
significantly decreased the ratio of NAD+/NADH, 
while exposure to acid stress changed this ratio 
compared to that of the controls. When L. lactis 
was pre-adapted to cold or osmotic stress and 
subsequently exposed to acid stress, a 
significant decrease in the NAD+/NADH ratio was 
observed compared to bacterial cultures with no 
initial stress but subsequent acid stress (Figure 
3). 
 
The production of OH· led to a significant 
decrease in the pre-adaptation capacity of the 
bacteria to cold and osmotic stress.  Exposure  to 
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Figure 3: NAD+/NADH ratio in L. lactis after 2 h pre-stress treatments and subsequent exposure to no stress (N) 
or pH 4.0 lactic acid stress (acid) for 6 h (n = 3) 
 

 
 
Figure 4: OH· radical ratio in L. lactis after 2 h pre-stress treatments and subsequent exposure to no 
stress (N) or pH 4.0 lactic acid stress (acid) for 6 h (n = 3) 
 
no initial stress and subsequent acid stress 
significantly changed the amount of OH· 
produced. When L. lactis was pre-adapted to 
cold or osmotic stress and subsequently exposed 
to acid stress, OH· production further declined 
(Figure 4). This indicated that pre-adaptation to 
cold or osmotic stress induced multiple metabolic 
cascades that relieved the redox damage caused 
by acid stress. In addition, these results suggest 
that oxidative activities in the electron transport 
chain (ETC) are possible mechanisms for acid 
adaptation and tolerance in L. lactis. 
 
Intracellular amino acid abundance 
 
The amount of intracellular amino acids markedly 
increased after pre-adaptation to cold stress and 
subsequent acid stress exposure (Table 1). At 
pH 3.5, the intracellular amount of cysteine, 

phenylalanine, glutamine, aspartate, and 
threonine was enhanced by 4.12-, 4.01-, 3.34-, 
3.11- and 3.01-fold, respectively, relative to the 
control at pH 3.5, while the amount of proline and 
methionine was reduced. These results showed 
that pre-cold stress altered the intracellular 
amino acid content in a pH-dependent manner. 
Furthermore, pre-cold stress played an important 
role in intracellular amino acid homeostasis, an 
adaptive response to lactic acid stress during 
fermentation. 
 
DISCUSSION  
 
The effects of pre-cold stress on L. lactis NZ9000 
resistance to acid stress were evaluated. Pre-
adaptation of L. lactis to cold stress (storage at 4 
°C for 2 h) significantly increased cell viability 
during subsequent exposure to pH 3.5 acid  
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Table 1: Amount (nmol/mg protein) of intracellular amino acids in L. lactis. Cells were pre-adapted to cold stress 
(4 °C for 2 h) and then were exposed to pH stress treatments for 6 h  
 

pH pH 5.5 pH 4.5 pH 3.5 
condition -Pre-cold +Pre-cold -Pre-cold +Pre-cold -Pre-cold +Pre-cold 
Asp 882.4 898.8 372.2 451.1 76.6 238.5 
Thr 606.1 611.4 191.4 266.1 45.0 135.7 
Ser 539.2 569.9 193.8 287.2 106.8 189.2 
Asp NH2 207.8 221.0 68.2 79.2 98.5 120.2 
Glu 4317.4 4330.8 2011.1 2576.2 283.9 948.3 
Glu NH2 990.2 1010.1 101.4 111.3 143.4 210.9 
Gly 881.4 901.1 471.5 511.4 79.1 156.0 
Ala 992.2 998.3 453.9 543.6 82.2 165.4 
Val 309.1 311.2 93.8 101.0 52.5 94.1 
Met 102.4 99.3 48.2 46.0 11.9 8.3 
Ile 149.1 151.1 71.3 78.5 46.2 63.3 
Leu 251.7 269.2 113.4 125.2 46.9 99.1 
Tyr 89.7 91.2 64.8 75.1 6.8 14.5 
Phe 151.6 155.3 81.4 89.2 16.4 66 
Orn 241.9 249.2 139.2 167.1 28.9 94.7 
Lys 3310.3 3360.4 1911.5 2511.2 302.7 505.6 
His 527.7 545.2 219.6 277.3 45.8 142.5 
Cys 786.9 815.1 311.7 404.8 139.1 573.2 
Arg 3301.2 3313.8 1911.1 2010.5 280.7 819.8 
Pro 231.1 224.6 72.4 69.9 19.9 15.3 

 
stress. Therefore, the ATR system may have 
been maintained in L. lactis exposed to pre-cold 
stress [14]. These results suggest that exposure 
to cold, lactic acid, and salt conditions diminish 
the stress tolerance and survival of L. lactis 
under various stress treatments. Significant 
physiological responses were also induced in 
response to pre-adaptation, which in turn, 
protected cells from the adverse effects of further 
exposure to high-acid conditions.  
 
Pre-adaptation potentially induced the activation 
of cysteine-, phenylalanine-, glutamate- and 
arginine-dependent metabolic pathways to 
maintain intracellular pH homeostasis. Thus, pre-
adaptation to cold stress led to the activation of 
specific metabolic pathways to protect the 
bacteria from the adverse effects of high-acid 
conditions and associated secondary effects [15–
18]. These results suggest that pre-cold stress 
may activate intracellular metabolic pathways 
that enhance stress tolerance and survival of L. 
lactis subjected to subsequent acid stress. 
 
As evidenced by Larsen et al, there is a 
metabolic link between amino acid metabolic 
pathways and tricarboxylic acid (TCA) cycle [16], 
via which NADH and succinate are generated. In 
this study, acid stress exposure caused a 
decrease in the NAD+/NADH ratio. However, pre-
adaptation to cold stress before acid stress 
exposure increased this ratio and the formation 
of OH·, which protected the bacteria from 
secondary oxidative damage induced by acid 
exposure [16,19,20]. These results indicate that 

pre-cold stress directly or indirectly affected the 
intracellular amino acid content in a pH-
dependent manner. Furthermore, pre-cold stress 
played an important role in intracellular amino 
acid homeostasis as an adaptive response to 
lactic acid stress during fermentation.  
 
Metabolic ETC complexes were regulated by 
different mechanisms in response to pre-
adaptation to cold stress and acid stress 
exposure. Acid stress generally induces the 
formation of the NADH dehydrogenase complex. 
Previous studies have shown that metabolic 
efflux involved in ETC complexes is regulated in 
L. lactis that is pre-adapted to cold stress and 
subsequently exposed to acid stress. This 
indicates there are differences in NADH 
consumption and conversion to NAD+ in the ETC 
in response to stressors [21–24], which can be 
induced by amino acid homeostasis and redox 
mobility. 
 
CONCLUSION 
 
L. lactis maintains a high level of metabolic 
efficiency when pre-adapted to cold stress before 
acid exposure. It also maintains maximum redox 
balance and amino acid haemostasis when pH is 
decreased to 3.5. As a result, disruption of redox 
balance weakens the ability of bacteria to 
tolerate acid stress. These results also 
demonstrate that pre-adaptation to cold stress 
regulates the ATR system in L. lactis, resulting in 
higher viability and acid tolerance in industrial 
fermentation conditions. 
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