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Abstract 

Ferroptosis is a newly discovered process of cell death that differs from apoptosis, autophagy, and 
pyroptosis. It is closely related to tumor formation, diseases that damage tissue, and neurodegenerative 
diseases. Activation of the extracellular regulated protein kinase (EPK) pathway and acylCOA 
synthetase long-chain family member 4 (ACSL4) are indicative of ferroptosis. During ferroptosis, the 
mitochondrial volume becomes smaller and the double membrane density increases. The process of 
ferroptosis involves disruption of the material redox reaction, and changes in the levels of cystine, 
glutathione, NADPH, and increase of GPX4, NOX, and ROS. Iron increases significantly in ferroptosis. 
Divalent iron ions can greatly promote lipid oxidation, ROS accumulation, and thus promote ferroptosis. 
The occurrence and progress of ferroptosis are influenced by multiple factors and signaling pathways. 
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INTRODUCTION 
 
Cell death is a vital process. Cell death modes 
include programmed death, non-programmed 
death, and necrosis. In 2012, Dixon et al [1] 
described ferroptosis as a new mode of non-
apoptotic cell death. Observed during study of 
the mechanism of erastin to kill human 
fibrosarcoma cells carrying the mutant oncogene 
RAS, ferroptosis is a mode of non-apoptotic cell 
death in which cells are injured by iron oxidation 
[2]. Ferroptosis occurs without typical 
characteristic of apoptosis, such as caspase 
activation. Instead, ferroptosis is related to the 
increase of iron within cells [3]. Ferroptosis is 
significantly different from autophagy, apoptosis, 

and pyroptosis both biochemically and 
morphologically (Table 1) [3]. Recent research 
has found that ferroptosis is closely associated 
with many diseases, such as Parkinson's 
disease (PD) [4], periventricular leukomalacia 
(PVL) [5], cerebral trauma [6], head and neck 
cancer (HANC) [7], hepatic carcinoma [8], and 
esophageal carcinoma [9]. Thus, targeting 
ferroptosis possibly provides a novel idea for 
treatment of these diseases. 
 
Characteristics of ferroptosis 
 
The manifestations of ferroptosis include 
changes of mitochondria, disruption of redox 
reaction equilibrium, accumulation of iron, and 
the build-up of active oxygen. These 
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accumulated substances can attack 
biomacromolecules and cause cell death [3]. 
 
The redox reaction of intracellular lipid oxide 
requires glutathione (GSH) and glutathione 
peroxidase 4 (GPX4), and the amount of lipid 
oxide would increase with a decrease in the 
content of intracellular GSH and decreased 
GPX4 activity. Instead, Fe2+ oxidizes the lipid in a 
reaction similar to the Fenton reaction thus 
producing a large number of reactive oxygen 
species (ROS) and causing ferroptosis to cells 

[10]. The long-chain acetyl coenzyme A and the 
synthetase family 4 (acylCOA synthetase long-
chain family member 4, ACSL4) are sensitive 
monitoring indexes of ferroptosis and influencing 
factors in ferroptosis [11]. In metabolic disorders 
of intracellular lipid oxide, there can be 
production of a large number of lipids and lipid 
metabolites due to the catalytic action of iron ions 
[3]. At the morphological level, the volume of 
mitochondria in cells with ferroptosis is 
decreased and the bilayer of mitochondria is 
thicker and denser compared to normal cells. 
Additionally, the crista in the mitochondria 
decrease or even disappear [1,2]. Inflammatory 
responses also occur during ferroptosis [12] 
Overall but these are significantly different from 

that in cell apoptosis, autophagy, and pyroptosis 
(Table 1). 
 
Regulatory mechanism of ferroptosis 
 
The occurrence of ferroptosis is influenced by 
various factors and regulated by multiple signal 
pathways. Activation of the extracellular 
regulated protein kinases (ERK) pathway is 
considered as an important indicator of 
ferroptosis, and the extent of ferroptosis is 
directly proportional to the amount of ERK-
phosphoric acid [13]. The regulation of cellular 
ferroptosis is illustrated in Figure 1 and further 
discussed. 
 
Changes of mitochondria 
 
In cells undergoing ferroptosis, the mitochondria 
show significant changes including decreases in 
volume and bilayer density. Erastin is an 
antineoplastic drug that can bind to the voltage-
dependent anion channels (VDACs) of the 
mitochondrial outer membrane. This can cause 
VDAC2/3 to close, indirectly inducing the 
production of ROS, and promoting ferroptosis 
[13,14]. Dixon et al observed that the build-up of  

 
Table 1: Characteristics of ferroptosis, apoptosis, autophagy and pyroptosis 
 

Type Biochemical 
characteristics 

Morphological 
characteristics 

Activation conditions Key 
factors 

Ferroptosis 
 
 
 
 
 

Apoptosis 
 
 

 
Autophagy 

 
 
 

Pyroptosis 

Lipid oxide and iron 
accumulation, 
decreased GSH, 
decreased activity of 
GPX4, high levels of 
ROS, activation of EPK 
pathway. 
 
DNA degradation, 
transcription stopped 
 
 
 
 
 
Increased lysosomal 
activity and protein 
damage 
 
 
caspase-1 activates 
and releases 
inflammatory molecules 

Smaller mitochondrial and 
thicker bilayer membrane 
with increased density, 
cristae decreased or 
eliminated 
inflammatory reactions, 
normal nucleus 
 
Cell shrinkage, cell volume 
decreased, decreased 
space between organelles 
but no damage, nuclear 
condensation, chromatin 
accumulation, 
marginalization, formation of 
apoptotic bodies  
 
Formation of 
autophagosomes, 
macroautophagy, 
microautophagy, and 
chaperone mediated 
autophagy 
 
Cell expansion, damage 
and small holes appear in 
the cell membrane, allowing 
the release of cell contents. 
DNA breaks but no DNA 
ladder bands appear  

Erastin, Sorafenib 
and RSL3 

 
 
 
 
 

Cell senescence, 
injury, infection, other 
pathological 
conditions  

 
 
 
 
 

Lack of nutrition and 
oxidative stimulation 

 
 

Inflammatory reaction   
 
 

GPX4,TFR1 
and SLC7A11 
 
 
 
 
 
Caspase-3,Bcl-
2 and Bax 
 
 
 
 
 
 
Beclin 1，
ATG5 and 
ATG7 
 
 
 
Caspase-1 
Caspase-11, 
NLPR1，
NLPR3 
NLRC4/NAIP,AI
M2，IL-1β,IL-
18 



Liu et al 

Trop J Pharm Res, November 2018; 17(11): 2311 
 

 
 
. 

 

 
 
Figure 1: Signal pathway of ferroptosis, a cellular death pathway. Ferroptosis is dependent on iron lipid oxidation 
damage, which is mainly related to iron metabolism and regulation of intracellular redox reaction. Under some 
conditions, XC is inhibited and GSH and NADPH content are decreased, resulting in decreased intracellular 
antioxidant capacity. In the presence of iron ions, the lipid oxidation process is greatly enhanced, leading to the 
accumulation of lipid reactive oxygen species. Ultimately, increased lipid reactive oxygen species attack 
biological macromolecules, causing ferroptosis in cells 
 
active oxygen may lead to mitochondrial 
damage. In addition, the increase in active 
oxygen affects calcium ions and the mediation of 
stress responses of the endoplasmic reticulum 
[15]. The link of active oxygen changes is critical 
to study the changes of mitochondria during 
ferroptosis, the downstream signals of 
ferroptosis, the regulation pathway of the 
ferroptosis signal, and the relationship between 
ferroptosis and endoplasmic reticulum 
responses. Additionally, recent work provides 
insight into the mutual metabolism between 
ferroptosis and other regulatory types of death 
[16,17]. 
 
Regulation of redox reactions 
 
The process of ferroptosis involves disorders of 
redox reactions, decreases in the levels of 
cystine, glutathione, and NADPH, and increases 
in the levels of GPX4, NOXS, and ROS. 
 
The cystine-glutamate antiporter (XC) on the cell 
surface is part of an important antioxidation 
system. The small molecule erastin can initiate 
ferroptotic cell death by binding and inhibiting 
VDAC2/3 (described above), and functionally 
inhibiting the XC cystine-glutamate antiporter 
system. Thus, cells that are treated with erastin 

have decreased amounts of cysteine [1].  
Because cysteine, glycine, and glutamic acid are 
required for glutathione synthesis [18], cells 
treated with erastin are unable to synthesize the 
antioxidant glutathione. The main role of 
Glutathione peroxidases (GPX) is to protect 
against oxidative damage. To do this, glutathione 
peroxidase acts to reduce lipid hydroperoxides to 
their corresponding alcohols and to reduce free 
hydrogen peroxide to water, preventing damage 
due to oxidation. 
 
With decreased glutathione, there is less 
antioxidation activity, and the depletion of 
glutathione leads to excessive lipid peroxidation 
and cell death. Increased lipid oxidation and 
ROS promotes ferroptosis under the action of 
divalent ferrous ions. Related to this pathway, the 
P53 protein can also inhibit activity of XC-
subunit-SLC711, resulting in decreased 
intracellular cystine and glutathione, increased 
ROS, and induction of ferroptosis [19]. 
 
NADPH is another important factor affecting the 
oxidation state. A decrease in the NADPH level 
promotes the accumulation of ROS and 
accelerates ferroptosis. Thus, the NADPH level 
also serves as an indicator of the sensitivity of 
cells to ferroptosis [20]. NADPH can be 
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synthesized via the pentose phosphate pathway, 
which is inhibited by H2O2. Intracellular 
glutathione can act to counter these inhibitory 
effects of H2O2. Thus, a decrease in the level of 
glutathione can result in decreased NADPH 
level. NADPH and GSSG react to generate GSH, 
and the occurrence of this reaction is decreased 
when the content of NADPH decreases [20]. 
 
The RAS gene is an oncogene, and expressed 
RAS induces ferroptosis. RAS can promote the 
synthesis of RSL3, a class of cell-lethal chemical 
compounds that promotes cell death. In addition, 
RAS gene expression promotes the generation 
of NAPDH oxidase (NOX).  NOX acts to 
decrease the content of NADPH and promote the 
accumulation of ROS and cell ferroptosis [1]. 
When the activity of the glutathione oxidase 
GPX4 is up-regulated, it can inhibit RAS activity. 
When RAS is inhibited, it is not available to 
promote RSL3 synthesis, so the RSL3 level 
decreases, resulting in less cell death. When 
RSL3 is up-regulated, RSL3 can bind to GPX4 
and deactivate it, inhibiting the synthesis of 
glutamine and promoting the accumulation of 
ROS [21]. Glutamine is decomposed into 
glutamic acid, aspartic acid, and alanine, which 
all participate in the tricarboxylic acid reaction, 
and are closely associated with carcinogenesis 
[22]. Glutamic acid also participates in the 
synthesis of glutathione. In addition, glutamine 
can be decomposed into L-glutamine [23], which 
can promote the generation of ROS. Thus, 
control of glutamine metabolism can achieve 
ferroptosis occurrence [24]. 
 
Regulation of iron metabolic reactions 
 
Iron has many important functions within the 
human body, such as the synthesis of 
hemoglobin, participation in oxygen transport, 
participation in synthesis of ATP, as the cofactor 
of some proteins in the electron transport chain 
of mitochondria, and participation in the 
synthesis of DNA as the ribonucleotide reductase 
[25]. The content of iron increases significantly 
during ferroptosis. Divalent iron ions can 
significantly promote lipid oxidation, the 
accumulation of ROS, and ferroptosis. 
 
When ferric ions cannot bind to proteins or other 
ligands in an appropriate manner, the H2O2-
dependent Fenton reaction can form ROS with 
metabolic toxicity. ROS attacks 
biomacromolecules, thus leading to cell death. 
Ferritin and its related gene-ferritin light chain 
(FTL) and ferritin heavy chain 1 (FTH1) can 
regulate the storage of ferric ions. The heat 
shock protein B1 (HSPB1) decreases the 
concentration of intracellular ferric ions by 

inhibiting the expression of TFR1. Thus, over-
expressed HSPB1 can inhibit ferroptosis [26]. 
Inhibiting the major transcription factor for iron 
metabolism iron response element binding 
protein 2 (IREB2) can significantly increase the 
expression of FTL and FTH1 and inhibit 
ferroptosis that is induced by erastin [27]. The 
iron regulator protein (IRP) is a trans-acting 
factor that can promote the effect of erastin to 
cause ferroptosis. Heme oxygenase-1 (HO-1) 
also plays an important role in ferroptosis [3]. 
The intracellular HO-1 can degrade heme into 
iron and porphyrin, thus increasing the killing 
effect of erastin. Overall, the catabolism of 
hemachrome can promote ferroptosis. The HO-1 
inhibitor, zinc protoporphyrin ZnPP, can inhibit 
ferroptosis induced by erastin. Nuclear receptor 
coactivator 4 (NCOA4) is a selective carrier 
receptor for ferroptosis, promoting the 
degradation of ferritin through autophagy. Over-
expressed NCOA4 can increase the degradation 
of ferritin and promote ferroptosis [28]. Thus, the 
targeted regulation of ferritin autophagy can 
regulate iron metabolism in cells, cause iron 
overloading, and lead to cell injury. 
 
Modulators of ferroptosis 
 
The development and progression of ferroptosis 
can be influenced by many factors and multiple 
signal pathways. Modifiers of ferroptosis will be 
described in the following paragraphs, including 
iron element inhibitors, lipid peroxidation 
inhibitors, iron element inducers, lipid 
peroxidation inducers, and other modifiers. 
 
Iron inhibitors 
 
Iron inhibitors include iron chelators such as 
deferoxamine (DFO), deferoxamine mesylate, 
2,2’–bipyridine and others. These iron chelators 
can effectively inhibit ferroptosis [1]. Additionally, 
the nuclear factor E2-related factor 2 (NRF2) 
inhibits ferroptosis by degrading the iron taken in 
by cells and limiting the production of ROS. 
 
Lipid peroxidating inhibitors 
 
Lipid peroxidating inhibitors include fertostain-1, 
liproxstain-1, zileuton, and 5-LOX. Fer-1 is an 
antioxidant containing arylamine, which can 
inhibit ferroptosis by inhibiting lipid peroxidation [ 
3]. The first and second derivatives of Fer-1 
(SRS11-92 and SRS16-86, respectively) exhibit 
more stable inhibitory activities, resulting in 
increased tissue damage resistance is 
strengthened significantly [29]. Liproxstain-1 
includes an amide and a sulfamide subunit. 
Stable and well adsorbed, the drug can 
significantly inhibit ferroptosis without interfering 
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with other cell death modes [30]. The 5-
lipoxygenase (5-LOX) inhibitor zileuton can 
inhibit the generation of cellular active oxygen 
and further inhibit glutamic acid toxicity and 
cellular ferroptosis, thus exerting neuroprotective 
effects [31]. The NOX inhibitor dimethylaniline 
can partially inhibit erastin-induced ferroptosis in 
cells [1]. Other experiments showed that 
butylated hydroxytoluene, TROLOX, ebselen, α-
tocopherol, vitamin E [32], lysosome activity 
inhibitors such as lostoxin A, pepstatin methyl 
ester, and ammonium chloride (NH4CL) [33] 
inhibit ferroptosis by inhibiting lipid peroxidation. 
 
Iron metabolism inducers 
 
Ferroptosis is related to the increase of iron 
within cells. Iron metabolism inducers can also 
induce ferroptosis. Sirsmesine or lapatinib can 
raise the level of ferric chloride (Fecl3) within the 
cells and induce ferroptosis by regulating the 
expression of transferrin in iron metabolism. 
Sirsmesine and lapatinib can treat breast cancer 
[34]. The co-incubation with cells of other iron 
metabolism inducers, such as ammonium ferric 
citrate, ferric citrate, or ferric chloride can 
increase the rate of ROS generation and the cell 
mortality rate [1]. 
 
Regulators of oxidative stress 
 
Erastin, heme oxygenase-1 (HO-1), erastin 
derivatives such as piperazine erastin (PE) [22] 
and imidazoline erastin [22] are all regulators of 
oxidative stress and are likely to induce 
ferroptosis as they have high solubility and 
stability in the human body. Sorafenib can induce 
ferroptosis and increase the toxicity of hepatoma 
carcinoma cells thus promoting tumor decline 
[35]. NAPDH oxidase (NOX) acts to produce 
ROS, and 5-lipoxygenase (5-LOX) also can 
promote generation of lipid ROS [36] to induce 
ferroptosis of cells. 
 
Other types of regulators 
 
Because of the double function of regulating lipid 
peroxidation and iron metabolism, baicalein has 
better regulatory effects than deferoxamine 
ferroptosis inhibitors such as Fer-1 and 
deferoxamine mesylate, suggesting a good 
potential for use as therapeutic drugs [37]. 
Epicatechin regulates lipid ROS metabolism for 
neuroprotection by regulating nuclear respiratory 
factors [38] and can also inhibit the ferroptosis 
pathway for neuroprotection by inhibiting 
ferroptosis-related genes (Gs, Rpl8, and 
ATP5G3). 
 

Other regulators such as sulfasalazine (SAS) 
inhibit cystine adsorption via the cystine/glutamic 
acid transporters, thus disrupting the redox 
equilibrium within cells and causing oxidation 
death dependent on ferric ions [1]. Cisplatin 
(CCDP) can increase the level of active oxygen 
within the cells, induce ferroptosis and specific 
morphological changes and chemical changes in 
tumor cells, thus inhibiting the growth of tumor 
cells. Meanwhile, the activity of CDDP can be 
partially reversed by Fer-1, suggesting that 
CDDP can induce ferroptosis [39]. As many 
cancers develop to advanced stages, cancer 
cells have developed resistance to 
chemotherapeutics, resulting in the failure of 
chemotherapy, allowing the tumor to grow and 
spread further. 1, 2-dioxolane compound (FI-
NO2), a peroxide with five rings that can not only 
stably and effectively induce ferroptosis of cells 
in a high-temperature environment but also 
overcome some common drug resistance. This 
suggests that it will exert perfect efficacy in 
cancer treatment [40]. 
 
Ferroptosis-related diseases 
 
Tumors 
 
Ferroptosis is closely associated with the 
occurrence, progression, and treatment of many 
tumors. Sorafenib is often used for the treatment 
of advanced liver cancer, and the state of the Rb 
protein is an important parameter indicating 
ferroptosis of liver cancer cells induced by this 
drug. A decrease in the level of Rb protein may 
promote ferroptosis in cells [8]. Knock-out of 
nuclear factor E2-related factor 2 (NRF2) and its 
signaling pathway downstream target genes can 
strengthen the activity of sorafenib and inhibit 
proliferation of liver cancer cells. Acetaminophen 
can induce ferroptosis in primary hepatic 
carcinoma cells, and Ferrostatin-1 can inhibit the 
induction role of acetaminophen [40]. The NOX 
inhibitor dimethylaniline partially inhibits the 
induction of ferroptosis by erastin in human lung 
cancer. Additionally, glucose-6-phosphate 
dehydrogenase and phosphoglycerate acid 
dehydrogenase can also protect human lung 
cancer cells against erastin-induced ferroptosis 
when the pentose phosphate pathway is knocked 
out. Pancreatic cancer cells are highly resistant 
against apoptosis. Using artesunate for treatment 
of pancreatic cancer can activate ferroptosis in 
cancer cells [4]. In breast cancer, down-
regulation of the MUCI-C/System Xc-signal 
pathway can induce ferroptosis in triple-negative 
breast cancer (TNBCA) cells, killing the cancer 
cells or weakening the cell self-renewal and 
tumorigenicity [41]. In addition, ferroptosis can 
occur in renal cancer [8], esophageal carcinoma 
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[9], lymphoma [42], head and neck cancer [7], 
glioma [43], and rhabdomyosarcoma [44]. 
 
Tissue damage 
 
Ferroptosis inhibitor, including iron inhibitor and 
lipid peroxidating inhibitor can effectively repairs 
ischemia reperfusion injury (IRI). Tissue damage 
triggered by ischemia reperfusion, such as 
myocardial damage, can be treated by inhibiting 
ferroptosis [24]. The ferroptosis inhibitor SRA16-
86 can be used to treat renal injury induced by 
ischemia reperfusion and oxalic acid crystals, 
rhabdomyolysis, and acute renal failure (ARF) 
[45]. The ferroptosis inhibitor liproxstain-1 can 
completely block lipid peroxidation and improve 
hepatic injury in mice caused by ischemia 
reperfusion [10]. 
 
Neurogenic diseases   
 
The accumulation of iron in the brain and the 
generation of ROS promote craniocerebral injury 
[46]. Hypoxia inducible factor-1 (HIF-1) can 
regulate the microenvironment under a hypoxia 
environment through multiple vascular 
endothelial growth factors and signal pathways. 
HIF-1 can also reduce the expression of HIF-1 to 
exacerbate cerebral ischemia. Hypoxia inducible 
factor-1 prolyl-hydroxylase (HIF PHD) can 
decompose HIF [47,48]. The death of developing 
oligodendrocytes causes periventricular 
leukomalacia, and is dependent on iron and is 
increased by an increase in lipid ROS [49]. In the 
peripheral nervous system, knockout of GPX4 
can cause lipid peroxidation and mitochondrial 
dysfunction, thus accelerating ferroptosis of 
neurons and causing paralysis of mice, but only 
minor effects on cortical neurons of adult rats 
[12]. The iron chelators, Fer-1, and PKC inhibitor 
can significantly inhibit the signal pathways of 
ferroptosis in neurodegenerative diseases [4]. 
Ferroptosis also plays important roles in various 
other nervous system diseases such as 
Huntington’s (HD), Alzheimer’s disease (AD), 
motor nerve degeneration, and paralysis [4]. 
 
Other diseases 
 
Wu et al found that ferroptosis participates in the 
death of keratinocytes due to the loss of GSH. A 
high dose of vitamin E can inhibit ferroptosis of 
skin keratinocytes and reduce skin injury [50].   
Mai found that the loss of GPX4 in T cells 
resulted in accelerated accumulation of lipid 
peroxide and induction of ferroptosis. Inhibition of 
ferroptosis can promote the survival and 
proliferation of T cells and protect immunological 
functions [32]. 
 

FINAL REMARKS 
 
Research on ferroptosis is in the preliminary 
stage and mechanistic details remain to be 
characterized [1]. The evaluation of ferroptosis 
primarily is based on morphological changes in 
cells and the accumulation of ROS. Similar to the 
activity of caspases in apoptosis, identification of 
an appropriate marker for ferroptosis will be 
highly useful [2]. Studies of ferroptosis 
mechanism have focused on oxidative damage 
and the iron metabolism signal pathway but 
additional topics are also worthy of study. For 
example, many triggers of ferroptosis have been 
reported in different tissues, but the main signal 
pathway in ferroptosis remains unclear [3]. Iron 
regulation and control of oxidation are complex 
processes that require further analysis [4]. The 
establishment and optimization of a ferroptosis 
research model is also an important requirement 
for more advanced research on ferroptosis [5]. 
Additionally, it is important to better understand 
the association of ferroptosis and different 
diseases to better determine the kind of drugs 
that might be most effective for disease 
treatment. Overall, increased study of ferroptosis 
should facilitate strategies to target this cell death 
mode as a treatment for many diseases. 
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