Original Research Article

In-vitro studies on acetylcholinesterase and butyrylcholinesterase inhibitory potentials of aerial parts of Vernonia oligocephala (Asteraceae)

Waqas Mahmood¹, Hammad Saleem²,³*, Irshad Ahmad¹, M Ashraf⁴, M. Shoaib Ali Gill⁵, Hafiz Muhammad Ahsan⁵,⁶, Kashif-ur-Rehman Khan², Sadia Chaman², Seema Abbas², Anam Mubashar², Shafi Ullah Khan³, Nafees Ahmad³

¹Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan, ²Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, 54000, Pakistan, ³School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, ⁴Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan, ⁵School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, P.R. China 212013, ⁶Faculty of Pharmacy, University of Central Punjab, 54000, Lahore, Pakistan

*For correspondence: Email: hammad.saleem@monash.edu, hammad.saleem@uvas.edu.pk; Tel: +92-3357885316

Revised accepted: 8 October 2018

Abstract

Purpose: To evaluate the cholinesterases (acetylcholinesterase and butyrylcholinesterase) enzyme inhibitory potential of aerial parts Vernonia oligocephala (V. oligocephala) as a potential remedy for the management of neurodegenerative disorders.

Methods: Crude methanol extract of V. oligocephala leaves and its fractions including n-hexane, dichloromethane (DCM), ethyl acetate and n-butanol were investigated for their inhibitory potentials against cholinesterases enzymes employing standard ELISA microtiter plate reader assay.

Results: All the extracts were moderately active against both the tested enzymes. The ethyl acetate and n-hexane fractions showed highest inhibition against acetylcholinesterase enzyme with IC₅₀ values of 128.81±0.44 µg/mL and 200.51±0.22 µg/mL, respectively. In case of butyrylcholinesterase, ethyl acetate (IC₅₀; 145.71±0.19 µg/mL) and DCM (IC₅₀; 269.31±0.45 µg/mL) fractions were the most active. All other fractions including crude methanol extract exhibited least inhibition. Overall, ethyl acetate fraction was the most active against both enzymes.

Conclusion: Results indicate the promising potential of V. oligocephala as source of new potential compounds for management of Alzheimer’s disease. However, further studies to isolate and identify the potential bioactive components are needed.

Keywords: Vernonia oligocephala, Acetylcholinesterase, Butyrylcholinesterase, Alzheimer’s disease

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

© 2018 The authors. This work is licensed under the Creative Commons Attribution 4.0 International License
INTRODUCTION

Alzheimer's disease is linked with the loss of cholinergic neurons in different parts of the brain and it is the common cause of dementia in older people [1]. Cortical cholinergic projections arising from the basal forebrain play critical role in the memory component of both Alzheimer and Parkinson types of dementia [2]. Alzheimer's disease originally posit a connection between disturbances in cerebral cholinergic neurotransmission and some of the cognitive impairments especially memory [3]. Symptoms of the disease can be modified by most of the cholinomimetic drugs [4]. Acetylcholine (ACh) and butyrylcholine (BCh) inhibitors are the approved agents by Food and Drug Administration (FDA) for the treatment of Alzheimer's disease (AD) [5]. The serious side effects of synthetic licensed drugs which are used to treat AD have forced the researchers to investigate safer AChE or BChE inhibitors from natural sources [6]. In traditional practices of medicine, numerous plants and their constituents are reported to enhance cognitive functions and to alleviate other symptoms of AD [7]. The discovery of AChE or BChE enzymes inhibitors from the medicinal plants have attracted the attention of the scientists and open a new way in research field [8].

The genus Vernonia is one of the major genus of family Asteraceae consisting of about 650 species [9]. The chemical constituents of this family mainly include volatile oils, terpenoids, phenolic compounds and tannins [10]. V. oligocephala is one of the important perennial herb of this genus traditionally used in treating cough asthma, colics, inflammation, ophthalmology, pruritus, and to prevent gonorrhea, tetanus and urinary tract infections [11]. The purpose of this study was to evaluate the possible inhibitory effects of the extracts against AChE or BChE.

EXPERIMENTAL

Chemicals and Standards

All enzymes were purchased from Sigma-aldrich and used without further purification. These are AChE (Electric eel (Sigma-Aldrich GmbH, USA), BChE equine serum lyophilized (Sigma-Aldrich GmbH, USA), substrates: acetylthiocholine iodide (Sigma-Aldrich, U.K.), butyrylthiocholine iodide (Sigma-Aldrich, Switzerland), DTNB (5,5-dithio-bis-nitrobenzoic acid) (Sigma-Aldrich, Germany) and eserine Sp. (Sigma-Aldrich, France). Chemicals including dipotassium hydrogen phosphate (K$_2$HPO$_4$), potassium dihydrogen phosphate (KH$_2$PO$_4$), potassium hydroxide were of extra pure analytical grade from Merck Group (Darmstadt, Germany) were used.

Plant material and extraction

Aerial parts of V. Oligocephala were collected from the peripheral areas of Bahawalpur and identified by Dr. Muhammad Arshad Chaudhry (late); Director, Cholistan Institute of Desert Studies (CIDS), The Islamia University of Bahawalpur and a voucher specimen number was also deposited for future reference.

The shade dried leaves of V. oligocephala were macerated in 80% w/v methanol for 7 days with periodic shaking, filtered and then concentrated using a rotary evaporator at 37°C. Concentrated methanol crude extract was further subjected to fractionation with n-hexane, dichloromethane (DCM), ethyl acetate and n-butanol [thrice with each solvent]. The filtrates of the respective fractions thus obtained were again concentrated by rotary evaporator. The respective concentrates, VOAC (V. oligocephala aerial crude methanol extract), VOAD (V. oligocephala aerial DCM extract), VOAE (V. oligocephala aerial ethyl acetate extract), VOAH (V. oligocephala aerial n-hexane extract) and VOAB (V. oligocephala aerial n-butanol extract), were weighed and stored in labelled airtight vials in refrigerator.

Acetylcholinesterase assay

The AChE inhibition activity was performed a slight modification of the protocol previously reported [12]. Total volume of the reaction mixture was 100 µL. It contained 60 µL Na$_2$HPO$_4$ buffer with concentration of 50 mM having pH 7.7. 10 µL test compound (0.5 mM/well) was added, followed by the addition of 10 µL (0.005 unit/well) enzyme. The contents were mixed and pre-read at 405 nm. Then, contents were pre-incubated for 10 min at 37°C. The reaction was initiated by the addition of 10 µL of 0.5 mM/well substrate (acetylthiocholine iodide), followed by the addition of 10 µL DTNB (0.5 mM/well). After 30 min of incubation at 37°C, absorbance was measured at 405 nm using 96-well plate reader (Synergy HT, Biotek, USA). All experiments were carried out with their respective controls in triplicate. Eserine (0.5 mM/well) was used as a positive control. Percentage inhibition was calculated as follows:

\[
\text{Inhibition} \cdot (%) = \frac{\text{Control} - \text{Test}}{\text{Control}} \times 100 \quad \ldots \ldots \quad (1)
\]
where Control is the total enzyme activity without inhibitor and Test is the enzyme activity in the presence of test compound.

IC$_{50}$ values (concentration at which there is 50 % enzyme catalyzed reaction) were calculated using EZ–Fit Enzyme kinetics software (Perrella Scientific Inc. Amherst, USA).

Butyrylcholinesterase assay

The BChE inhibition activity was performed using a slight modification of the method previously reported [12]. Total volume of the reaction mixture was 100 µL containing 60 µL Na_2HPO_4 buffer, and 50mM having pH 7.7. 10 µL test compound 0.5 mM/well was added followed by the addition of 10 µL (0.5 unit/well) BChE. The contents were mixed and pre-read at 405 nm and then pre-incubated for 10 min at 37°C. The reaction was initiated by the addition of 10 µL of 0.5 mM/well substrate (butyrylthiocholine chloride), followed by the addition of 10 µL DTNB, 0.5 mM/well. After 30 min of incubation at 37°C, absorbance was measured at 405 nm using 96-well plate reader (Synergy HT, Biotek, USA). All experiments were carried out with their respective controls in triplicate. Eserine (0.5 mM/well) was used as positive control. Inhibition (%) was calculated using above Eq 1.

Statistical analysis

The results obtained were expressed as mean value and standard deviation. All the tests were performed for three times and the data analysis was carried out in triplicates. To calculate IC$_{50}$, graph Pad Prism software (Version 6.03) was used. One-way analysis of variance (ANOVA) and Tukey’s significant difference post hoc test ($p<0.05$) were used to calculate differences. SPSS v22.0 software was used to carry out all experimental analysis.

RESULTS

The results of percentage AChE and BChE enzyme inhibition (at the concentration of 0.5 mg/mL) and half maximal concentration (IC$_{50}$) values of crude methanol extract and different fractions of *V. oligocephala* leaves were calculated. The results of AChE inhibition are presented in Table 1.

The effect of the *V. oligocephala* extract and its fractions on the inhibitory activity against BChE are depicted in Table 2.

DISCUSSION

This study has demonstrated that the aerial parts of *Vernonia oligocephala* has moderate inhibitory activity against cholinesterases (acetylcholinesterase and butyrylcholinesterase) enzymes with IC$_{50}$values in the range of 128.81±0.44 - 269.31±0.45 µg/mL. The methanol crude extracts of the plant did not produce any significant inhibition of cholinesterases unlike the *n*-hexane and ethyl acetate extracts.

The aerial part of *V. oligocephala* is known to possess sesquiterpene lactones, triterpene (3β-acetoxyneohop-13(18)-ene) along with β-sitosterol, 3β-hydroxylup-20,29-ene, 3β-hydroxyolean-12en-28-oic acid and β-sitosterol-3-O-β-D-glucopyranoside [13]. The AChE inhibitory potential of *V. oligocephala* extracts can be attributed to the occurrence of the sesquiterpenes in this plant [14-16]. Similarly, some alkaloids, such as galantamine, physostigmine [17], and other compounds like glycosides, terpenoids, flavonoids [18], lignans[19], coumarins [20], ursolic acid [21] terpenoid, flavonoids and phenolic compounds are known potent cholinesterases inhibitors [22-24].

<table>
<thead>
<tr>
<th>Sample code</th>
<th>AChE inhibition (%)</th>
<th>AChEIC$_{50}$ (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOAC</td>
<td>52.41±0.39</td>
<td>**>500</td>
</tr>
<tr>
<td>VOAD</td>
<td>23.31±0.34</td>
<td>**>500</td>
</tr>
<tr>
<td>VOAE</td>
<td>73.79±0.11</td>
<td>128.81±0.44</td>
</tr>
<tr>
<td>VOAH</td>
<td>68.01±0.41</td>
<td>200.51±0.22</td>
</tr>
<tr>
<td>VOAB</td>
<td>43.01±0.21</td>
<td>**>500</td>
</tr>
<tr>
<td>Eserine</td>
<td>91.29±1.17</td>
<td>0.04±0.0001</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SD of three replicates; **IC$_{50}$ value was higher than 500 µg/mL, AChE= acetylcholinesterase. Eserine was used as positive control.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>BChE inhibition (%)</th>
<th>BChEIC$_{50}$ (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOAC</td>
<td>29.44±0.55</td>
<td>**>500</td>
</tr>
<tr>
<td>VOAD</td>
<td>60.78±0.11</td>
<td>269.31±0.45</td>
</tr>
<tr>
<td>VOAE</td>
<td>74.25±0.44</td>
<td>145.71±0.19</td>
</tr>
<tr>
<td>VOAH</td>
<td>44.01±0.41</td>
<td>**>500</td>
</tr>
<tr>
<td>VOAB</td>
<td>34.63±0.34</td>
<td>**>500</td>
</tr>
<tr>
<td>Eserine</td>
<td>82.82±1.09</td>
<td>0.85±0.0001</td>
</tr>
</tbody>
</table>

Values are expressed as means ± S.D. of three replicates; **IC$_{50}$ value was higher than 500 µg/mL, BChE= butyrylcholinesterase. Eserine was used as positive control.
Several venonia species have been found to contain phenolic and flavonoids like naringenin, apigenin, protocatechuic acid and luteolin-catechin [25]. These compounds could also have contributed to the observed bioactive potential of *V. oligocephala* reported in this study.

CONCLUSION

The leaves of *V. oligocephala* has inhibitory activity against both acetylcholinesterase and butyrylcholinesterase enzymes. Although further studies are required to isolate the compound responsible for the observed bio-activity, the plant could be considered for further studies in the treatment of neurodegenerative disorders.

DECLARATIONS

Conflict of interest

The authors declare that they have no conflict of interest with regard to this work.

Authors’ contribution

We declare that this work was performed by the authors named in this article, and all liabilities pertaining to claims relating to the content of this article will be borne by the authors.

REFERENCES