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Abstract 

Purpose: To schedule chemotherapy drug delivery using Deterministic Oscillatory Search algorithm, 
keeping the toxicity level within permissible limits and reducing the number of tumor cells within a 
predefined time period.  
Methods: A novel metaheuristic algorithm, deterministic oscillatory search, has been used to optimize 
the Gompertzian model of the drug regimen problem. The model is tested with fixed (fixed interval 
variable dose, FIVD) and variable (variable interval variable dose, VIVD) interval schemes and the 
dosage presented for 52 weeks. In the fixed interval, the treatment plan is fixed in such a way that 
doses are given on the first two days of every seven weeks such as day 7, day 14, etc. 
Results: On comparing the two schemes, FIVD provided a higher reduction in the number of tumor 
cells by 98 % compared to 87 % by VIVD after the treatment period. Also, a significant reduction in the 
number was obtained half way through the regimen. The dose level and toxicity are also reduced in the 
FIVD scheme. The value of drug concentration is more in FIVD scheme (50) compared to VIVD (41); 
however, it is well within the acceptable limits of concentration. The results proved the effectiveness of 
the proposed technique in terms of reduced drug concentration, toxicity, tumor size and drug level within 
a predetermined time period. 
Conclusion: Artificial intelligent techniques can be used as a tool to aid oncologists in the effective 
treatment of cancer through chemotherapy. 
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INTRODUCTION 
 
Cancer, considered as a fatal disease and a 
leading cause of mortality worldwide, is 
characterized by abnormal growth of cells, 
leading to the destruction of body tissue. 

Cancers are generally treated with different 
procedures that include a combination of 
surgery, chemotherapy, radiation, hormone 
infusion, and immunotherapy.  The selection of 
treatment depends on the type, stage and 
physical health of the patient. Chemotherapy is 
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always considered as one of the most complex 
treatments, as it involves treating the patient with 
a combination of various drugs. Scheduling and 
choice of chemotherapy drugs are generally 
made with the help of information available in 
text books or journals with proven results for 
similar patients. In reality, effective drug 
combination and schedule are fixed for a specific 
cancer type, based on clinical trials. 
 
The current strategy to schedule chemotherapy 
is based on the empirical values from the clinical 
trials conducted during the development of 
drugs. Clinical trials are enumeration based and 
hence incur huge cost and time as testing has to 
be done with many combinations. To overcome 
these limitations, the chemotherapy drug 
regimen can be modeled mathematically and 
solved using intelligent algorithms. This results in 
a low cost, quick optimized scheduling solution. 
The mathematical model of drug optimization is 
based on pharmacokinetic and 
pharmacodynamic process. Swan and Vincent 
[8] modeled the chemotherapy process as a 
mathematical optimization problem based on the 
Gompertzian model. An objective function based 
on toxicity and number of cells killed was 
developed by Zietz [9] to find the optimized 
schedule. Researchers have also worked on 
finding the optimal drug regimen based on the 
cell cycle [10,11]. Murray developed a new 
mathematical model based on drugs that are 
non-cell-cycle-specific [12,13]. Other 
mathematical models based on compartment 
model [14], adjuvant chemotherapy [7], cell-
cycle-specific [15] and drug resistance [16] have 
also been developed to address the 
chemotherapy drug regimen problem. Each of 
these mathematical models is based on certain 
parameters of the chemotherapy procedure like 
toxicity, cells killed and cell cycle. 
 
The mathematical models developed by various 
researchers can be solved using various 
methods ranging from numerical solutions to soft 
computing techniques. A numerical method was 
proposed by Martin to find an optimal schedule of 
chemotherapy drugs with the inclusion of 
constraints [17]. Pontryagin Maximum Principle 
[18], explicit formulation [8,9,13], Newton's 
method [19], iterative algorithms [20], nonlinear 
programming [21] are other mathematical 
techniques applied in the literature to solve the 
problem. Heuristic methods have also been lately 
applied to solve the chemotherapy problem. 
Distributed evolutionary computing [22], adaptive 
neural network [23], genetic algorithm [24], 
strength Pareto evolutionary algorithm [25], 
particle swarm optimization [26] and various 
hybrid approaches [27,28] have been 

successfully applied to find an optimal drug 
regimen to treat cancer patients. In this paper, a 
new optimization algorithm, Deterministic 
Oscillatory Search (DOS) [29] has been applied 
to solve the Gompertzian chemotherapy drug 
regimen problem with an aim to reduce the 
number of tumor cells and maintain the toxicity 
levels within limits.  
 
METHODS 
 
Problem statement 
 
A Gompertzian mathematical model [17] with 
intravenous drug infusion is considered in this 
paper. This model is based on the concept of 
slowing down of tumor cell growth with an 
increase in the size of the tumor cell and 
approaching a plateau population. The 
mathematical expression is characterized by the 
pharmacokinetics model of the drug as given in 
the differential equation (Eq 1). 
 

 …………… (1)   
 
where D(t) is the drug infusion and C(t) is the 
plasma drug concentration. C(t) increases with 
increase in D(t) and then decreases as a first-
order elimination kinetics at a rate of λ, which is 
related to half-life with factor ln(2)/λ. With the 
drug infused, the number of cancer cell changes 
as given in equation (2), which represents the 
Gompertzian cell fashion. 
 

 

……………………………………  (2) 
 
where  is the initial tumor population,  is the 
asymptotic plateau population,  is the doubling 
time of tumor during exponential growth. The first 
term in the equation represents the proliferation. 
The second term is the killer term which 
represents the death of the cell with  
proportional to the number of tumor cells killed 
per unit per time per unit of drug.  is the drug 
concentration above the minimum therapeutic 
concentration ( ) as expressed in equation (3). 
 

……...(3) 
      

 ………….. (4) 
 
The toxicity parameter is taken as in equation 
(5), where ƞ is a constant [30]. 
 

 ……………………… (5) 
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Based on the literature, three toxicity constraints 
and one efficacy constraint is considered in the 
proposed model [17,30,31] and given in 
equations (6)-(9). 
 

 ………………… (6) 
 

 …………………. (7) 
 

 …………………………. (8) 
 

 …………………… (9) 
 

 and  are the maximum values of 
tolerable drug concentration, tolerable toxicity 
and drug exposure in plasma. Based on these 
expressions the objective function is designed to 
minimize the number of tumor cells at a finite 
time, which is taken as 52 weeks in the problem 
under study. 
 

 satisfying the equations (1) to 
(9). 
 
A novel meta heuristic algorithm used to solve 
the aforementioned objective function has been 
discussed in the next section. 
 
Deterministic oscillatory search 
 
Deterministic Oscillatory Search algorithm is not 
based on the natural phenomenon and hence 
has not been inspired by nature, like other meta 
heuristic algorithms. Gradient methods are 
capable of converging to a local optimum unless 
when the problem has noisy parameters with 
numerous peaks and valleys. Meta-heuristic 
algorithms are capable of solving this problem by 
using random numbers and the concept of 
swarming. Metaheuristic algorithms broadcast 
information obtained by each particle so that the 
entire community becomes fitter. Velocity based 
algorithms such as PSO, Firefly Algorithm, 
Symbiotic Organism Search, Gravitational 
Search Algorithm use it more directly when 
compared to evolution based algorithms such as 
Genetic Algorithm and Differential Evolution. As 
random numbers in an algorithm make it 
unpredictable in nature, DOS is an algorithm that 
has been developed with an inspiration to be a 
gradient based algorithm with the addition of 
swarming concept. The algorithm has also been 
developed with the motivation to create a robust 
technique that shows zero deviation when run 
several times with the same parameter settings. 
Since DOS algorithm does not incorporate 
random numbers, it provides same results for a 
given problem for any number of trials, making it 
extremely robust. The convergence 

characteristics are also found to be the same for 
each trial run. DOS can thus be summarized as 
an algorithm inspired to retain the robustness of 
classical methods with improved convergence 
characteristics as that of meta heuristic 
algorithms. 
 
Deterministic Oscillatory Search algorithm 
consists of two components namely Initialization 
and Movement of particles. A combination based 
distribution is used in DOS algorithm where the 
particles are always influenced by attractive 
forces towards the global best and hence they fly 
towards the center. In the proposed algorithm, 
the particles are considered to move during each 
iteration under the influence of velocity. The 
velocity of the particle is initialized using 
Equation (10). 
 

 ……………………… (10) 

 
where  and  are the initial velocity and 

position of a particle 'i'. The particles move 
further based on gradient and swarming concept. 
In gradient based movement, the particles move 
along the direction which produces better results 
in consecutive trials. The velocity of the particle 
is halved and the direction is reversed if the 
fitness does not improve. The particle thus 
achieves the local optimum solution. This type of 
movement of the particle is similar to an 
oscillation or zig zag movement. A concept of 
fitness slope is incorporated in the algorithm, with 
three scenarios: 
 
 Positive (current movement is producing 

better results) 
 Negative (current movement is producing 

worse results) 
 Unknown (velocity updated and slope is 

unknown) 
 
The drawback of gradient technique when the 
search space has numerous peaks and valleys is 
overcome in DOS by incorporating swarming 
behaviour. Swarming is applied only when the 
particle fails to produce better results using 
gradient technique. The particle is made to move 
towards the global best position by updating the 
velocity using Equation (11). 
 

 ………………. (11) 

 
If the movement produces better results, the 
particle continues to find another local optimal 
solution and this process continues until the 
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maximum number of evaluations is reached. The 
procedure to apply DOS algorithm to the 
chemotherapy optimization problem under study 
is briefed in the following pseudo code [29]: 
 
Step 1: The number of particles and maximum 
number of iterations are initialized: 
 
Step 2: The particles are initially placed in the 
search space using the combinatorial 
deterministic method 
 
Step 3: For each particle, the fitness value is 
calculated and the best particle is identified 
 
Step 4: The velocity of the particles are initialized 
using equation (1) and their fitness slope is 
initially set as unknown 
 
Step 5: Iterative process while (number of eval < 
max eval) for (i = 1:number of particles) 
 
1. Calculate new position by adding velocity to 
the current position 
 
2. Calculate the new fitness of the particle 
 
3. Increment eval counter and update the Global 
best value 
 
4. if (slope == unknown) 
 
Slope of the particle is updated to be either 
positive or negative based on the new fitness 
value  
 
else if (slope == positive)  
 
if (new fitness is worse than old fitness) 
 
(i) Update velocity  (-velocity/2) 
 
(ii) Update slope to be negative  
 
else if (slope == negative)  

 
if (new fitness is worse than the old fitness)  
 
(i) Update velocity using Equation (2) 
 
(ii) Update slope to be unknown  
 
end if  
 
end for  
 
end while  
 
Step 6: The position and fitness values of the 
global best particle are displayed. 
 
RESULTS 
 
The chemotherapy optimization problem is 
solved using the proposed DOS algorithm. The 
characteristics of DOS include zero randomness 
and no tunable parameter. Two schemes of drug 
scheduling: Fixed Interval Variable Dosage and 
Variable Interval Variable Dosage are 
implemented and the results are presented for 52 
weeks. The number of iterations is taken as 30, 
with the population size as 30 at an optimal level. 
The other parameters are set with the values as 
given in table 1. In the table, [D] represents the 
units of drug concentration/mass of drug 
delivered. 
 
FIVD scheme 
 
The fixed interval variable dose scheme involves 
treatment where the interval between 
consecutive dosages is kept as constant 
throughout the treatment cycle. The treatment 
plan is fixed in such a way that doses are given 
on the first two days of every seven weeks such 
as day 7, day 14 etc. Throughout the treatment 
plan, doses are given only 7 times. At the start of 
the treatment, a fixed high dose level of 50 [D] is 
administered. 

 
Table 1: Parameter initialization 
 
Parameter Value Unit 
τg - First doubling time of the tumor during exponential growth 150 Days 
Qg - Plateau population of cancer cells without treatment 1012 Cells 
N0 - Initial cancer cell population 1010 Cells 
Keff  - Fractional cell kill term for a highly effective drug 2.7x10-2 1/days.[D] 
 λ - Decrease in concentration of drug per unit time 0.27 1/days 
Η - Toxicity rate constant 0.4 1/days 
Cth - Threshold drug concentration in plasma 10 [D] 
Cmax - Maximum tolerable drug concentration 50 [D] 
Ccum - Maximum tolerable total drug exposure in plasma 4.1x103 [D].days 
Tmax - Maximum tolerable toxicity 100 [D] 
Tf - Duration of treatment schedule 364 Days 
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       Figure 1: Drug concentration in FIVD scheme 
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            Figure 2: Convergence of DOS in FIVD scheme 

 
The drug concentration in the FIVD scheme for 
52 weeks is presented in Figure 1. The 
concentration of the drug reaches a maximum 
when it is administered, and then decreases until 
the next dosage after 7 weeks. 
 
The convergence characteristics of DOS is 
presented in Figure 2 and it is clear that the DOS 
algorithm finds the solution in a minimum number 
of iterations. Also, the convergence characteristic 
of DOS does not change for any number of 
iterations.  The reduction in the tumor cell 
number is evident from Figure 3. The number of 
tumor cells decreases with every week's dosage 
and almost reaches to zero in a year's treatment 
schedule. 

Figure 4 displays the toxicity level of the cells 
during the entire course of the drug regimen. It 
can be noted that the toxicity level is maintained 
well within the maximum limit during the 
chemotherapy treatment. The profile indicates 
that the toxicity increases when the drug is 
administered and decreases during the rest 
period. 
 
VIVD scheme 
 
Variable Interval Variable Dosage scheme 
includes drug regimen at unequal intervals of 
time. The rest period between successive 
dosages is also not equal. The number of 
iterations for this scheme is fixed as 50 and other  
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         Figure 3: Tumor population in FIVD scheme 
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         Figure 4:  Toxicity profile in FIVD scheme 
 
parameters are set as in Table 1. Figure 5 shows 
the concentration of the drug, which is 
maintained within the maximum limit of 50. 
During the period when the drug is not 
administered for a long duration, the drug 
concentration goes down to zero and then again 
the dosage is scheduled for the patient. The 
convergence characteristic is given in Figure 6. 
 
The population of the tumor cells, as seen from 
figure 7, reaches approximately zero after the 
one-year drug regimen. It is seen that the 
population increases slightly during the long rest 
period. This is the limitation of VIVD scheme. 
Figure 8 displays the toxicity of the cells in the 
VIVD scheme, which is maintained below the 
maximum threshold of 100. 
 
The value of drug concentration is more in the 
FIVD scheme compared to VIVD; however, it is 
well within the acceptable limits of concentration.  
During the whole period of treatment for both 

schemes, the constraints mentioned in the 
previous sections have been considered and 
hence the toxicity, as well as drug concentration 
levels, do not cross the permissible limits. The 
drug schedule and rest period are carefully 
chosen so that the cancer cells do not aggravate 
or toxicity does not increase beyond the limit.  
 
An analysis of the numerical results obtained 
during the VIVD and FIVD scheme is 
summarized in Table 2. 
 
On comparing the two schemes, FIVD provides a 
better reduction in the number of tumor cells after 
the treatment period. Also, a significant reduction 
in the number is obtained half way through the 
regimen. The dose level and toxicity are also 
lower in the FIVD scheme. 
 
DISCUSSION 
 
Analysis of the results reveals that the determi- 
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        Figure 5: Drug concentration in VIVD scheme 
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        Figure 6: Convergence of DOS in VIVD scheme 
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Figure 7: Tumor population in VIVD scheme 
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    Figure 8:  Toxicity profile in FIVD scheme 
 

Table 2: Analysis of FIVD and VIVD 
 
Parameter FIVD VIVD 
Maximum drug dose [D] 32.47 50 
Average drug dose [D] 10 12 
Maximum drug concentration [D] 50 41.03 
Average drug concentration [D] 23.22 16.32 
Maximum toxicity [D] 59.14 66.49 
Average toxicity [D] 38.59 37.27 
Cell reduction percentage (%) 98 87 
 
nistic oscillatory search algorithm is able to solve 
the chemotherapy optimization problem 
successfully. Since DOS has gradient 
characteristics in addition to swarm intelligence, 
it performs better than the algorithms that rely on 
swarming behaviour alone. Another advantage of 
DOS is that the algorithm has to be evaluated 
only once to obtain the solution, in contrast to 
other algorithms, which are evaluated for many 
numbers of trials and the mean value is taken as 
the optimized solution. It can also solve problems 
irrespective of the number of global minima in the 
solution. 
 
CONCLUSION 
 
A new computationally feasible, fast, problem-
independent soft computing algorithm has been 
applied to solve the chemotherapy drug 
scheduling problem. The core idea of this 
algorithm was inspired from the limitations 
observed from various existing metaheuristic 
algorithms like stochasticity, tunable parameters, 
and search behaviour. DOS algorithm has been 
developed with important features such as using 
no random numbers, single tuning parameter 
and search using gradient based technique 
inculcated with swarming nature. It is evident 
from the results that the FIVD scheme of 
treatment can cure the patients better than the 
VIVD scheme. The FIVD scheme results in a 
98% reduction in tumor cells as compared to 

87% by VIVD. The maximum toxicity level is also 
less (59) compared to VIVD (66). The 
characteristics of the treatment such as regularity 
and less toxicity lead to better clinical feasibility. 
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