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Abstract 
Purpose: To determine the mechanism of vasorelaxant effect of 1-trifluoromethoxyphenyl – 3 -(1-
propionylpiperidin–4-yl) urea (TPPU) in cardiovascular diseases, including hypertension.  
Methods: Isolated rat thoracic aortic tissue preparations were mounted in an organ bath set up 
integrated with isometric transducer and a Power Lab assembly. TPPU (0.3 - 100 µM) was tested for 
vasorelaxant effect against low K+ (25 mM) and high K+ (80 mM)-induced contractions and its 
mechanism was determined in the presence of different antagonists (glibenclamide, 4- aminopyridine 
and tetraethyl ammonium). 
Results: In rat aortic preparations, TPPU showed a concentration-dependent (0.3 – 100 µM) and 
significant (p < 0.001) inhibition of low K+ induced contractions with complete inhibition obtained at 100 
µM. TPPU produced significant (p < 0.05) inhibition of  high K+ induced contractions  with maximum 
relaxation of  15.36  ± 1.95 % and 15.85 ± 3.35 %  at 30 and 100 µM, respectively. Glibenclamide 
(Gb,10 µM) pretreatment partially inhibited the vasorelaxant effect of TPPU against low K+ in a 
concentration range of 1 - 30 µM. 4-Aminopyridine (4-AP, 1 mM) and tetraethyl ammonium (TEA, 10 
mM), markedly inhibited the  vasorelexant effect of TPPU against low K+ induced contractions with 
maximum relaxation of 20.09 ± 2.40 and 21.67 ± 0.88 %, respectively, at 100 µM. 
Conclusion: TPPU possesses marked vasorelaxant properties which provides sound pharmacological 
evidence for its use as a potential drug candidate in the management of hypertension. 
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INTRODUCTION 
 
Soluble epoxide hydrolase (sEH) has been a 
recent focus of research, is an indigenous 

enzyme which metabolizes epoxyeicosatrienoic 
acids (EETs) to functionally less active  
produces, the dihydroxyeicosatrienoic acids 
DHETs [1]. In endothelial cells, cytochrome P450 
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epoxygenase metabolizes arachidonic acid to 
produce EET. EETs are well known for diverse 
biological activities including vasodilation, anti-
inflammatory, platelet aggregation inhibitory, 
analgesic and cardioprotection [2,3].  
 
sEH is an indigenous enzyme which transforms  
EETs to inactive dihydroxyeicosatrienoic acids 
DHETs [2]. The potential biological activities of 
DHETs such as vasodilatation and anti-
inflammatory effects are less compared to EETs 
[4]. sEH is widely distributed in intestine, liver, 
kidney, vascular smooth muscles, neuronal cells 
and astrocytes [5]. Inhibition of sEH enzyme 
activity causes elevated levels of EETs in 
biological fluid and tissues, thus promoting 
beneficial pharmacological actions of EETs in the 
body. These findings suggest that sEH inhibition 
could be a potential therapeutic target for 
cardiovascular disease and pain and 
inflammatory conditions [6]. 
 
Inhibition of sEH enzyme prevents 
biodegradation of EETs and enhances their 
beneficial actions. Growing body of literature 
revealed that deletion of sEH or over activity of 
CYP epoxygenase lowered blood pressure in 
animal model of hypertension [7]. Large number 
of studies have revealed anti-inflammatory, 
vasodilator, antihypertensive, cardiac and renal 
protective effects of sEH inhibitors [6,8,9]. 
 
1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin 
-4-yl) urea (TPPU) is novel among the sEH 
inhibitors with relatively better pharmacokinetic 
and biological activity profile [10]. Human and 
animals studies have also shown TPPU as a 
potent inhibiter of sEH [11]. Though TPPU has 
been widely studied for its diverse biological 
activities, however, its vasorelaxant effect in 
intact vascular tissues is yet to be explored. The 
present study explored the possible vasodilator 
activity of TPPU, mediated predominantly 
through activation of voltage-dependent K+ 
channels, which may explain the potential 
therapeutic role of this compound in the 
management of hypertension. 
 

 
 
Figure 1: Chemical structure of soluble epoxide 
hydrolase inhibitor, TPPU 
 

EXPERIMENTAL 
 
Chemicals 
 
Different K+ channel antagonists, tetraethyl 
ammonium (TEA), 4-aminopyridine (4-AP) and 
glibenclamide (Gb) were acquired from Sigma 
Chemicals Company (St Louis, MO, USA). TPPU 
was procured from Synthia laboratories Davis, 
California, USA. Other chemicals used in the 
study such as Potassium chloride, calcium 
chloride, glucose, magnesium sulphate, 
potassium dihydrogen phosphate, sodium 
bicarbonate and sodium chloride were obtained 
from E. Merck, Darmstadt, Germany. All 
chemicals used were of the analytical grade.  
EXPERIMENTAL ANIMALS 
 
Sprague–Dawley rats of either sex and weighing 
180 – 200 g were maintained at the Animal 
House facility  of Aga Khan University Medical 
College  at 23 - 25 C. Animals had free access 
to tap water, ad libitum. Animal were provided 
standard diet which consists of (g/kg): flour 380, 
fiber 380, molasses 12, NaCl 5.8, nutrivet L. 2.5, 
powdered milk 150, vegetable oil 38, potassium 
metabisulfate 1.2 and fish meal 170. Water was 
withdrawn from rats for 12 - 14 h prior to 
anesthesia. The animals were euthanized 
following deep anesthesia with isoflurane (2 - 5 
% v/w) by inhalation in a closed chamber. After 
the achievement of deep anesthesia that was 
confirmed by absence of touch and corneal 
reflexes of the animals, thoracotomy was 
performed followed by cardiac puncture/heart 
excision to euthanize the animals. 
 
Experiments were conducted and compiled to 
the guidelines of Institutional ethics committee 
and the Institute of Laboratory Animal 
Resources, Commission on Life Sciences, 
National Research Council (National Research 
Council, 1996) [12]. This research work was the 
part of the PhD dissertation of Mr. Shafiq Ali 
Shah, which was reviewed and approved by the 
Board of Studies and Research at University of 
Malakand, KPK, Pakistan and Aga Khan 
University Medical College Karachi Pakistan, 
with approval no. 60-ECACU-BBS-15. 
 
Animal studies 
 
Rats were euthanized after they were fully 
anesthetized with isoflurane by inhalation. 
Isoflurane was used 2-5 % v/w, till achievement 
of deep anesthesia. Once deep anesthesia was 
achieved and confirmed by absence of touch and 
corneal reflexes, thoracotomy was performed 
followed by cardiac puncture/heart excision to 
euthanize the animals. Afterwards, the thoracic 
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aorta was isolated, cleaned of fatty tissues, cut 
into small rings and mounted individually in a 
tissue bath (5 mL) filled with Kreb’s solution at 37 
ºC and aerated with carbogen  [13]. A resting 
tension of 2 g was gradually applied to mounted 
aortic tissue preparation. The tissues were 
initially incubated for 30 min and finally 
equilibrated for 1 h prior to addition of any 
chemical agent. K+ at low (25 mM) and high (80 
mM) concentration was used to stabilize the 
respective tissue preparations until achievement 
of constant responses usually after 2 – 3 times 
application followed by washing of the tissue with 
fresh Kreb’s solution [14]. After stabilization 
state, low and high K+ was administered to the 
tissue to induce sustained contractions, 
respectively. The relaxant effect of TPPU at 0.1 - 
100 µM was assessed against low and high K+-
induced contractions, respectively. Isometric 
responses of the vessels were measured 
employing isometric transducer 50-7996 
(Harvard Apparatus, Holliston, MA, USA), 
connected to PowerLab assembly. 
 
To explore the participation of K+ channel 
opening and/or Ca++ channel antagonist 
properties [15], the vasorelexant effect of TPPU 
was further studied against low K+ (25 mM) and 
high K+ (80 mM)-induced contractions, 
respectively. After achieving sustained 
contractions of vessels   to K+, TPPU (0.1 - 100 
µM) was added in a cumulative fashion to the 
vessels to obtain its concentration-dependent 
inhibitory responses. The relaxation of the tissue 
preparation was expressed as percentage of the 
control contraction mediated by K+. 
 
To characterize and confirm the type of K+-
channels involved in the vasodilating effect, the 
inhibitory effect of TPPU was reproduced in the 
aortic preparation pretreated with glibenclamide 
(Gb, 10 µM), an ATP-dependent K+ channel 
antagonist [16], tetraethyl ammonium (TEA, 10 
mM), a nonselective antagonist of the K+ 

channels [17] and 4 - aminopyridine (4-AP, 1 
mM), a voltage-dependent K+  channel blocker 
add [14]. 
 
Statistical analysis 
 
Data is presented as mean  standard error of 
mean (s.e.m, n = 4 - 6) and the median effective 
concentrations (EC50) with 95 % confidence 
intervals (CI). Data was considered statistically 
significant at p < 0.05. The inhibitory effects of 
various treatments were statistically analyzed by 
non-linear regression employing GraphPad 
program (GraphPad, San Diego, CA, USA). 
 

RESULTS 
 
Vasodilating effect of TPPU in isolated 
rat vascular tissues 
 
When tested on isolated rat aortic tissue, TPPU 
caused significant (p < 0.001) inhibition of low 
K+-induced contractions in a concentration 
dependent manner with an EC50 value of 6.72 
µM (6.32 - 7.02, 95 % CI, n = 4), while it has 
produced complete inhibition (100% relaxation) 
at highest tested concentration of 100 µM (Figure 
2). TPPU produced mild but significant (p < 0.05) 
relaxation of high K+ (80 mM)-induced 
contractions with resultant values of 15.36 ± 
1.95and 15.85 ± 3.35 %  at higher test 
concentrations of 30 and 100 µM, respectively 
(Figure 2). 
 

 
 
Figure 2. Inhibitory effect of  TPPU on “□” low K+ (25 
mM) and “■”high K+ (80 mM)-induced contractions in 
isolated rat aortic rings. Values shown are mean 
±S.E.M, n = 4-6. “ns” represents non-significant, */@ p < 
0.05, **p < 0.0, ***p < 0.001, * shows comparison of the 
relaxant effect of TPPU on low K+ (25 mM) -induced 
contractions vs. 100 % control contractile response in 
that tissue.@ shows comparison of the relaxant effect 
of TPPU on high K+ (80 mM)-induced contractions vs. 
100 % control contractile response in that tissue and  
ns = non-significant 
 
Insight into mechanisms mediating 
vasodilating effect of TPPU 
 
To explore the subtype of K+ channels involved 
in the observed vasodilator effect of TPPU, the 
tissues were pre-incubated with different K+ 
channel blockers. As shown in Figure 3 pre-
treatment of tissue with 4-aminopyridine (4 - AP, 
1 mM), suppressed the relaxant  effect of TPPU 
against low K+-induced contractions (p < 0.001) 
with remaining resultant relaxation of 12.9±2.46 
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% (n = 5) at 100 µM compared to control vessels 
showing 100 % relaxation in the absence of 4 - 
AP observed at the same concentration. Similarly 
pretreatment of blood vessels with TEA (10 mM) 
caused significant (p < 0.001) attenuation of the 
relaxant  effect of TPPU against low K+ induced 
contractions with maximum relaxation of 13.5 ± 
3.50 % versus 100 % in control vessels in the 
absence of TEA (Figure 3). Pre-incubation of the 
blood vessels with glibenclamide (10 µM) caused 
partial (p < 0.01) antagonism of the inhibitory 
effect of TPPU (Figure 3). 
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Figure 3. Inhibitory effect of TPPU on “□” low K+-
induced contractions in the absence and presence of 
“▲” glibenclamide (Gb, 10 µM), “●”tetraethyl 
ammonium (TEA, 10 mM) and “×” 4-aminopyridine (4 - 
AP, 1 mM) in isolated rat aortic preparations. Values 
shown are mean ± S.E.M, n = 4 - 6. “ns” represents 
non-significant, */

+/$p < 0.05, **/
++/$$p < 0.01, +++/$$$p < 

0.001, “*”shows comparison of the relaxant effect of 
TPPU on low K+ (25 mM)-induced in the presence vs. 
absence of Gb. “+” shows comparison of the relaxant 
effect of TPPU on low K+ (25 mM) -induced in the 
presence vs. absence of TEA. “$”shows comparison of 
the relaxant effect of TPPU on low K+ (25 mM)-induced 
in the presence vs. absence of 4-AP 
 
DISCUSSION 
 
Recently TPPU has got much research attention  
for its efficacy as a potential therapeutic agent in 
cardiovascular disorders [18]. It has been shown 
to have antihypertensive effects by enhancing 
EETs level in the body via sEH inhibition. EETs 
are well recognized for their potent vasodilator 
effect. 
 
The objective of this investigation was to explore 
the vasodilatory effect of TPPU and its possible 
mechanism in isolated rat aortic preparations. 
Previous studies have shown  that vasodilator 

response of vessel is usually mediated through 
K+ channel opening or Ca++ channel blockade 
[15]. In order to characterize, whether the vaso-
relaxant effect of TPPU was mediated via similar 
pathways, its relaxant efficacy was tested against 
low K+(25 mM) and high K+ (80 mM)-induced 
contractions [19]. Interestingly, TPPU caused 
statistically significant (p < 0.001) and dose 
dependent inhibition of low K+-induced 
contractions with partial but significant (p < 0.05) 
inhibition against high K+-induced contractions 
only at 30 and 100 µM. The efficacy of TPPU 
against low K+ (25 mM)-induced contractions 
suggesting K+ channel opening activity of this 
compound [20]. It has been shown that 
compounds that selectively inhibit the low K+ ( < 
30 mM) induced contractions are considered  K+ 
channel opener, while Ca++channel blockers are  
efficacious against both low and high K+-induced 
contractions [13, 21]. 
 
To elucidate the type of K+ channels implicated in 
the vasorelaxant  activity of TPPU, its effect was 
assessed against low K+-induced contraction in 
tissue pretreated with  glibenclamide, a ATP-
dependent K+(KATP) channels antagonist [16], 
TEA, a non-specific K+ channel blocker [17] and 
4-Aminopyridine, a voltage dependent K+ 
channels blocker [22]. Glibenclamide had partial 
inhibitory influence, while 4-AP and TEA caused 
marked inhibition of low K+-induced contractions 
suggesting that the vasorelaxant effect of TPPU 
is most likely mediated via activation voltage-
dependent K+ channels (Kv channels) and non-
specific K+ channels. Moreover, these findings 
indicate the additional role of KATP channel 
activation and a weak Ca++ antagonist-like effect 
[23] as possible  vasorelaxant mechanism(s) of 
TPPU in part, though additional mechanism(s) 
cannot be ruled out. 
 
Among varied types of K+ channels, Kv 
neutralize the depolarization of the membrane 
potential via K+ efflux [17]. Studies have also 
expressed Kv channels in aortic smooth muscles 
[24]. K+ channel openers are potential new class 
of drugs with diverse therapeutic potential in 
hypertension, asthma, and gastrointestinal 
problems [25]. These compounds cause 
membrane hyperpolarization by opening K+ 
channels and  increase in K+ efflux, decreasing 
intracellular free Ca++ leading to smooth muscle 
relaxation [17]. 
 
In conclusion, this study demonstrates that TPPU 
possesses profound vasorelaxant properties. 
These findings provide sound evidence for TPPU 
as a potential antihypertensive agent. Future 
studies are warranted to explore the mechanism 
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of TPPU as potential vasodilator agent in the 
management of cardiovascular disorders. 
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