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Abstract 
Purpose: To investigate the ability of two synthetic curcuminoid analogues, 6-(4-hydroxy-3-
methoxyphenethyl)-5-(3-(4-hydroxy-3-methoxyphenyl)propanoyl)-4-phenyl-3,4-dihydropyrimidin-2(1H)-
one (compound A) and 6-(4-hydroxy-3-methoxyphenethyl)-4-(4-hydroxy-3-methoxyphenyl)-5-(3-(4-
hydroxy-3-methoxyphenyl)propanoyl)-3,4-dihydropyrimidin-2(1H)-one (compound B), to protect against 
oxidation-induced cell death and the potential to enhance proliferation and differentiation of C2C12 
myoblast cells. 
Methods: Antioxidant activity of curcuminoid analogues was evaluated by DPPH assay. The cytotoxic 
activity of the compounds (0 - 25 mM) on C2C12 myoblasts was determined by MTT assay while the 
effect on cell proliferation was assessed by BrdU uptake. Myoblast cell differentiation was measured by 
the formation of myotubes and myosin heavy chain (MHC) protein expression using 
immunofluorescence staining and Western blotting, respectively. 
Results: Both curcuminoid analogues exhibited strong anti-oxidant activity of up to 3-fold greater than 
that of ascorbic acid, and were non-toxic to C2C12 myoblasts at concentrations up to 25 mM. 
Furthermore, these curcuminoid analogues mitigated myoblast cell death induced by oxidative stress. 
Notably, both analogues (10 nM) had no effect on cell proliferation. However, only compound A 
significantly enhanced myoblast differentiation comparable to the effects of dihydrotestosterone (1 µM) 
and estradiol (10 nM).  
Conclusion: The results suggest that compound A may serve as a lead compound for the development 
of suitable therapeutic agents for muscle injuries and diseases.  
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INTRODUCTION 
 
Skeletal muscle mass and strength are 
progressively loss with aging leading to the 

decline in functional ability known as sarcopenia 
[1].  One of the most important factors that could 
play a key role in triggering sarcopenia is the 
oxidative stress. In aging conditions, the 
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production of reactive oxygen species (ROS) is 
enhanced while the anti-oxidative capacity is 
diminished [2] resulting in cellular oxidative 
stress critical for cell death. Under this condition, 
the proliferation and differentiation capacities of 
satellite cells, which are required for muscle 
repair and/or regeneration, decrease [1] leading 
to a gradual decline in muscle mass and 
function.  
 
The expression of acetylcholinesterase (AChE) 
involves the regulation of cell proliferation, 
differentiation and survival. For example, 
myogenic differentiation of C2C12 cells is 
associated with an increased expression of 
AChE [3]. In addition, an upregulation of AChE 
has been shown after induction of apoptosis by 
different types of stimuli in various cells [4]. On 
the other hand, an overexpression of this 
enzyme has been shown to affect cell-cycle in 
differentiating cells [5], inhibit cell proliferation 
and promote apoptosis [6,7]. Although AChE is 
not a universal activator of apoptosis, it 
enhances sensitivity to cell death [6]. In addition, 
AChE involved with cellular apoptosis by 
implicating in apoptosome formation in various 
cell types [8]. Recently, we have synthesized a 
series of curcuminoid analogues in moderate to 
good yields and showed that they have an 
anticholinesterase activity suggesting their 
potential for therapeutic applications in anti-
neurodegenerative diseases such as Alzheimer’s 
disease [9]. However, other biological properties 
of these compounds have not yet been 
investigated.  
 
The purposes of this study were to evaluate the 
antioxidant property of two synthetic curcuminoid 
analogues and to investigate their abilities to 
protect myoblasts against oxidative-induced cell 
death. Furthermore, the potential of these 
compounds to enhance myoblast proliferation 
and differentiation were determined. 
 
EXPERIMENTAL 
 
Reagents 
 
Unless otherwise indicated, cell culture reagents 
were purchased from Gibco (CA, USA) and basic 
chemical reagents and primary antibody were 
obtained from Sigma-Aldrich (MO, USA). Mouse 
monoclonal anti-MHC and Western HRP 
substrate were from Millipore (MA, USA). 
 
Synthesis of curcuminoid analogues 
 
Curcuminoid analogues, 6-(4-hydroxy-3-
methoxyphenethyl)-5-(3-(4-hydroxy-3-
methoxyphenyl)propanoyl)-4-phenyl-3,4-

dihydropyrimidin-2(1H)-one (compound A) and 6-
(4-hydroxy-3-methoxyphenethyl)-4-(4-hydroxy-3-
methoxyphenyl)-5-(3-(4-hydroxy-3-
methoxyphenyl)propanoyl)-3,4-dihydropyrimidin-
2(1H)-one (compound B), were synthesized and 
characterized as previously described [9]. Their 
chemical structures are illustrated in Figure 1. 
 

 
 
Figure 1: Chemical structures of synthetic 
curcuminoid analogues 
    
Cell culture 
 
C2C12 mouse myoblast cell line was purchased 
from American Type Culture Collection (VA, 
USA). Cells were maintained in growth medium 
(GM; DMEM supplemented with 10 % fetal 
bovine serum) and 1% antibiotic at 37 °C in a 
humidified 5 % CO2 incubator.  
 
The cell cycle stage of the subconfluence cells 
were synchronized by being cultured in DMEM 
for 24 h. The cells were then transferred to GM 
containing various concentrations of compound A 
or B or dihydrotestosterone or 17β-estradiol for 
another 24 h. The treated cells were subjected to 
MTT assay for cytotoxicity and cell proliferation 
determination. 
 
The confluence cells were cultured in 
differentiation medium (DMEM supplemented 
with 2 % horse serum) containing curcuminoid 
analogues or 17β-estradiol (E2) or 
dihydrotestosterone (DHT) for 5 days to stimulate 
myoblast differentiation. After treatment, 
differentiated cells were washed and then fixed 
with cold methanol for immunofluorescence 
staining or harvested protein for Western blot 
analysis. 
 
MTT assay  
 
Cell viability was determined by a reaction with 
3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT)  
according to the protocol described previously 
[10]. The treated cells were incubated with GM 
containing MTT at 0.5 mg/mL final concentration 
for 4 h. Thereafter, the solution was discarded 
and replaced with 100 µL solubilizing solution. 
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The absorbance was measured at 570-630 nm 
using a microplate reader (BioTek, VT, USA). 
 
DPPH assay 
 
Free radical scavenging capacity was measured 
by a reaction with 2,2- diphenyl-1-picrylhydrazyl 
(DPPH) radical. The aliquots (100 μL) of 400 µM 
DPPH were mixed with various concentrations of 
100 µL curcuminoid compounds or ascorbic acid 
in a 96-well plate. Following 30 min incubation, 
the absorbance at 517 nm was measured. 
Radical scavenging capacity (RSC) was 
calculated using Equation 1 [11]: 
 
RSC (%) = 100 – {(A- B)/C}100 ………….(1) 
 
where A is the absorbance of the probe; B is the 
absorbance of the extract alone, and C is the 
absorbance of the DPPH radical alone. The 
radical scavenging capacity was shown as 50 % 
inhibition concentration (IC50). 
 
BrdU incorporation assay 
 
The number of proliferating cells in S-phase was 
detected by BrdU incorporation assay. At 3 h 
before harvested, an aliquot of BrdU solution was 
directly added into the medium of the treated 
cells at 10 mM final concentration. The 
harvesting cells were then fixed with cold 
methanol for 10 min before processed to 
immunofluorescence staining. 
 
Induction of cell death  
 
C2C12 myoblasts were pretreated with 
compound A or B at the indicated concentration 
for 24 h. Then, the pretreated cells were 
transferred to a medium containing 0.8 mM H2O2 
for 24 h to induce cell death by 80 % [12]. Cell 
viability was measured by MTT assay as 
described above. 
 
Immunofluorescence staining 
 
The fixed cells were washed and rehydrated in 
PBS. Cells were permeabilized and blocked the 
nonspecific binding with 5 % normal goat serum 
diluted in PBS for 1 h. The primary antibody 
diluted in PBS was applied to cells and then 
incubated overnight at 4 °C.  After several times 
of washings, cells were incubated with a 
secondary antibody conjugated with fluorescence 
dye and Hoechst 33342 for 45 min. The staining 
signals were visualized under a fluorescence 
microscope (Olympus IX73; MI, Italy). 
 

Western blotting 
 
The treated cells were washed and subjected to 
protein extraction using a RIPA buffer with a 
protease inhibitor. Protein was separated by 
centrifugation and then concentration was 
determined using BCA kit. An equal amount of 
protein (20 μg) was resolved on 10% SDS-PAGE 
and transferred to PVDF membrane. To block 
the nonspecific binding, blots were incubated 
with 0.5% skim milk in PBS and were then 
probed with primary antibody for 1 h at RT. After 
severally washed, blots were incubated with 
appropriate secondary antibody conjugated with 
HRP. The resulting bands were visualized with 
Western HRP substrate. The image J software 
was used to quantify the band intensity. 
 
Statistical analysis  
 
All data are expressed as a mean ± standard 
error of the mean (SEM) of at least three 
independent experiments. Statistical significance 
between groups was analyzed by one-way 
analysis of variance (ANOVA) with Tukey’ post 
hoc test. All statistical analysis were conducted 
by IBM SPSS version 19 with p-value set at *p < 
0.05,**p < 0.01, or ***p < 0.001. 
 
RESULTS 
 
Cytotoxicity and antioxidant activity 
 
Both curcuminoid analogues at concentrations 
up to 25 µM showed no effect on C2C12 
myoblast cell viability determined by MTT assay. 
Instead, significant enhancements of cell viability 
at concentrations lower than 10 µM were 
observed (Table 1).  Based on MTT assay which 
detects the living, but not dead cells, these data 
indicate that the number of living myoblast cells 
in curcuminoid treatment groups was increased. 
Such an increment may be due to enhanced 
myoblast cell proliferation and/or reduced cell 
death. BrdU incorporation assay was, therefore, 
used to detect the proliferating cells during the S-
phase. 
 
Table 2: Antioxidant activity of curcuminoid 
analogues; mean ± SEM (n = 4) 
 
Compound IC50 (µM) 

A 18.6 ± 0.1 

B 17.4 ± 0.1 

Ascorbic acid 47.8 ± 0.1 
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Table 1: Cytotoxicity of curcuminoid analogues; mean ± SEM (n = 4) 
 

Compound 
Percent control at the specified concentration (µM) 

Control  0.01 0.1 1 5 10 25 

A 100 ± 3.3  160.8 ± 
7.8*** 

156.1 ± 
5.6*** 

155.3 ± 
10.4*** 

136.5 ± 
9.2* 

109.0 ± 
3.0 

106.7 ± 
9.1 

B 100 ± 3.3   145.1 ± 
7.1*** 

136.4 ± 
7.8** 

129.4 ± 
6.4** 

125.7 ± 
6.1* 

109.0 ± 
3.4 

108.4 ± 
2.5 

 
Since most aromatic ring compounds that exhibit 
antioxidant activity [13,14] favor cell viability, the 
antioxidant property of curcuminoid analogues 
was investigated using the DPPH assay. Indeed, 
both compounds exhibited a potent antioxidant 
activity (IC50 of 18.6 ± 0.1 and 17.4 ± 0.1 μM, 
respectively) when compared to that of ascorbic 
acid (IC50 of 47.8 ± 0.1 μM) (Table 2). 
 
C2C12 myoblast cell proliferation 
 

 
Figure 2:  Proliferation of C2C12 myoblast assessed 
by BrdU uptake. (A) Representative photographs of 
BrdU-positive nuclei (red), BrdU-negative nuclei 
(blue), and merge (pink) after treatments with 
curcuminoid analogues (10 nM), E2 (10 nM), or DHT 
(1 µM) for 24 h. (B) Quantitative analysis of BrdU-

positive cells expressed as percent of control. Scale 
bar = 100 µm 
As shown in Table 1, both compounds 
significantly increased the cell viability at low 
concentration. This may result from an increase 
in cell proliferation and/or a decrease in cell 
death. To delineate these possibilities, BrdU 
incorporation assay was performed. The results 
showed that both compounds and E2 did not 
alter the number of cells in S-phase whereas 
BrdU uptake was significantly increased the in 
DHT treatment group (Figure 2). This result 
suggests that the compounds suppressed cell 
death but not enhanced cell proliferation. 
 
Protective activity on cell death 
 

 
Figure 3: Protective effect of curcuminoid analogues 
on H2O2 toxicity in C2C12 cells. The ability of 
compound A (A) and compound B (B) to prevent cell 
death induced by H2O2  
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Oxidative stress is a risk factor for the 
development of apoptosis and inflammation 
during muscle regeneration. Anti-oxidation is 
therefore the key mechanism for preventing 
those and for improving muscle regeneration 
efficiency. Our results showed that pretreatment 
with compound A and compound B, at 
concentration 5 and 15 µM, respectively, 
significantly mitigated C2C12 cell death induced 
by 0.8 mM H2O2 up to 60% compared to 75% in 
E2 pretreated group (Figure 3). This suggests 
ROS scavenging action. 
 
C2C12 myoblast cell differentiation  
 
The confluence cells were induced to 
differentiate into myotubes in the presence of the 
test compounds. Results showed that compound 
A, but not compound B, significantly enhanced 
C2C12 myoblast differentiation by increasing the 
numbers and size of myotubes (Figure 4), and 
MHC protein expression up to 1.5 folds (Figure 
5). The enhancement of myoblast differentiation 
induced by compound A was comparable to 
those of DHT and E2. 
 

 
Figure 4: Enhancement of C2C12 myoblast 
differentiation by curcuminoid analogues. 
Representative photographs showing MHC positive 
myotubes (green, arrowhead) and nuclei (blue) 
staining after induction of differentiation in the 
presence of curcuminoid analogues (10 nM), E2 (10 
nM), or DHT (1 µM) for 5 days. Scale bar = 100 µm 
 
 

DISCUSSION 
 
Our results corroborate those of other studies 
showing that diarylheptanoids from Curcuma 
cumosa Roxb are non-cytotoxic to several non-
cancer cell lines at the concentration lower than 
100 µM [13,15-16]. Similarly, the effects of other 
diarylheptanoids from other plant species depend 
on the concentration and/or the cell types being 
tested [17,18]. Of note, the diarylheptanoids, 
even from different species, are well-known for 
antioxidant activity [13,14]. Several lines of 
evidence indicate that the presence of hydroxyl 
groups on aromatic rings is required for the 
antioxidant activity. The degree of such activity 
mainly depends on the numbers and positions of 
hydroxyls on the nuclear structure. Multiple 
hydroxyls are favorable for the activity, while 
mono- and di-hydroxyls exhibit no detectable 
activity [19]. 
 

 
Figure 5: Enhancement of MHC protein expression by 
curcuminoid analogues. (A) Representative blots of 
MHC and tubulin after treatment with each 
curcuminoid analogue (10 nM) compared to E2 (10 
nM) and DHT (1 µM) for 5 days. (B) Quantitative band 
intensity of MHC normalized with tubulin and 
expressed as fold changes to control 
 
Even though curcumin, a well-known 
diarylheptanoid, has been reported to stimulate 
muscle precursor cell proliferation under 
appropriate conditions [20], only some 
diarylheptanoid compounds from Curcuma 
comosa exhibit a proliferative effect on C2C12 
myoblast cells [12]. These compounds also have 
been shown to promote proliferation in MC3T3-
E1 mouse pre-osteoblast [15] and human 
osteoblast cells [16]. Such a variable impact 
effect on cell proliferation maybe due to the type 
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and concentration of compounds, and cell types 
being tested. 
 
The free radical scavenging occurs through 
enzyme and non-enzyme mechanisms, the latter 
takes place through compounds widely present 
in natural plants. Curcuminoid analogues used in 
this study has been reported to inhibit 
acetylcholinesterase activity [9], which is 
expressed after apoptosis induced by different 
stimuli [4]. Other diarylheptanoids from different 
plant species also exhibit a protective effects on 
cell death induced by different chemicals. For 
example, acerogenin A from Acer nikoense 
showed a protective effect against glutamate-
induced neurotoxicity in mouse hippocampal 
HT22 cells [21]. Two other diarylheptanoids from 
the bark of black alder (Alnus glutinosa) 
significantly antagonized the effects of 
doxorubicin-induced cell death in human normal 
keratinocytes [22]. The current research 
indicates that diarylheptanoids play a key role in 
cellular protection against cell death induced 
through PI3K/Akt and Nrf2 signaling pathways 
[21]. The results, therefore, confirm previous 
studies and further illustrate that this activity of 
the diarylheptanoids is not limited to human 
retinal epithelial cells, human normal 
keratinocytes, rat hepatocytes, and mouse 
hippocampal cells but also extends to mouse 
myoblasts. 
 
The effect of curcuminoids on myoblast 
differentiation has been reported to show a 
biphasic effect. Thus, curcumin at low 
concentration (1 µM) promoted primary mouse 
myoblast differentiation both in vitro and in vivo 
studies by increasing MHC level up to 3-folds 
[20]. On the other hand, high concentration (20 
µM) of curcumin significantly inhibited myoblast 
differentiation by suppressing myogenin and 
MHC expression [23]. The stimulatory effect of 
curcuminoids on cell differentiation is not limited 
only to myoblasts. They also stimulated cell 
differentiation of MC3T3-E1 mouse pre-
osteoblasts [15] and NB-39 neuroblastoma [17]. 
The action of curcuminoids on myoblast 
differentiation is abolished by ICI 182,780, 
suggesting that curcuminoids enhance myoblast 
differentiation by activating ER [12]. In addition, 
curcuminoids also mediate their activity through 
the ER to enhance differentiation in osteoblasts 
[15,16]. Notably, the results showed that only 
compound A, but not compound B, enhanced 
myoblast differentiation. This may be due to its 
ability to adjust its alignments suitable for ER 
activation. Of note, curcuminoids possess the 
biphenolic structure similar to E2, as well as the 
presence of hydroxyl groups, which is required 
for binding with ER. Whether or not the effect on 

myoblast differentiation is involved with binding 
to ER warrants further investigations. 
 
CONCLUSION 
 
The findings of this study show that synthetic 
curcuminoid compound A and B are not toxic to 
C2C12 mouse myoblasts. These compounds 
also exhibit antioxidant activity that is greater 
than that of ascorbic acid. Moreover, they 
mitigate cell death induced by H2O2. Although 
both compounds do not enhance cell 
proliferation, however, compound A enhances 
myogenic differentiation of myoblasts 
comparable to the effects of DHT and E2. 
Therefore, the ability of compound A to prevent 
muscle wasting and/or enhance muscle 
regeneration after injury indicates that it is a 
potential therapeutic agent for the treatment of 
muscle injury and/or diseases. 
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