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Abstract 

Purpose: To examine the anti-asthmatic activity of picroside I in murine asthma model, and to elucidate 
the mechanism(s) involved. 
Methods: The study involved systematic sensitization of acclimatized BALB/c mice with ovalbumin 
(OVA), and subsequent exposure to aerosol allergens. The effect of picroside I on associated IgE 
formation was determined. All assays were performed using standard protocols. Protein expression was 
assessed using western blotting. 
Results: Picroside I inhibited allergic airway inflammation, AHR, and the production of OVA-associated 
IgE and Th2 cytokines. Moreover, it altered the T-bet/GATA3 ratio by suppressing the phosphorylation 
of STAT6 in a dose-dependent manner.  
Conclusion: These results indicate that the anti-asthmatic effect of picroside I occurs via a mechanism 
involving inhibition of Th2 cytokines by suppression of the expressions of pSTAT6 and GATA-3, and 
upregulation of the expression of T-bet. Thus, picroside I is a promising agent for the management of 
asthma. 
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INTRODUCTION 
 
Asthma is considered one of the main chronic 
inflammatory airway diseases. It impacts over 
three hundred million people the world over, and 
is expected to affect another hundred million by 
2025 [1]. The frequency of allergic asthma has 

elevated considerably in the recent past, thereby 
posing a serious health problem [2]. Allergic 
asthma is primarily caused by a number of 
allergens which include, but are not limited to 
house dust, foods, and drugs. The major 
symptoms of asthma are wheezing, 
breathlessness and cough [3]. These symptoms 
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result from bronchoconstriction and thickening of 
bronchial mucosa due to inflammation of the 
eosinophilic airway, remodelling of the airways, 
and production of larger-than-normal amounts of 
mucus. Indeed, allergic asthma is allied with 
inflammation of the airways and disproportionate 
production of mucus [4].  
 
In allergic asthma, the inflammation of the 
airways is regulated by a multifaceted 
mechanism [4,5]. During an asthmatic attack, the 
allergens processed by antigen-presenting cells 
trigger the initiation of Th2 cells and release of 
various cytokines. These cytokines intensify the 
allergic response by enhancing inflammatory cell 
infiltration into the airways, and by initiating 
disproportionate formation of mucus [6]. 
 
The differentiation of Th2 and regulation of the 
transcription of Th2 cytokines involves GATA-3. 
In this process, the initiation of signal transducer 
and transcription-6 (STAT6) activator via 
interleukin-4 signal transduction causes 
dimerization and STAT6 phosphorylation to 
pSTAT6 which, in the nucleus, triggers the 
expression of GATA-binding protein-3 (GATA3), 
leading to Th2 cell differentiation [5]. 
 
Picrorhiza kurroa is a highly imperilled, medicinal 
herb found only in the North Western Alpine 
Himalayas (altitude, 2800 – 4800 m) [7]. It is the 
source of picroside 1. Studies have shown that 
picrosides exhibit diverse medicinal effects which 
include, but are not limited to hepatoprotective, 
anti-inflammatory, and anti-carcinogenic effects 
[5,6]. In the present investigation, the impact of 
picroside I on inflammation of airway in asthma 
model was evaluated. 
 
EXPERIMENTAL 
 
Animals 
 
Five-week old BALB/c female mice were 
procured from Shantou University Medical 
College, and were kept under controlled 

conditions. The animals were given standard 
pellet diet ad libitum. Prior to commencement of 
the study, the mice were acclimatised to 
laboratory conditions for seven days. The study 
was approved by the animal ethics committee of 
Luoding People's Hospital, Luoding, (Approval 
no. C7A547LH/2017) and all the procedures 
were carried out as per standard international 
guidelines [8]. 
 
Animal grouping and treatment 
 
The mice were randomly grouped into 6 different 
groups. Mice in group 1 (sham, normal control) 
received phosphate-buffered saline (PBS, 
vehicle) only. Group 2 mice were OVA control 
(OVA-sensitized and OVA-challenged (OVA/OVA 
+ vehicle); while mice in group 3 were OVA-
sensitized, OVA-challenged, and given 0.7 mg/kg 
dexamethasone (OVA/OVA/DEXA). Groups 4 - 6 
mice OVA-sensitized, OVA-challenged, and 
given picroside 1 at concentrations of 0.2, 2.0 
and 20 mg/kg (OVA/OVA/picroside 1-treated). 
Dexamethasone were given orally, once daily 
from day 20 to day 32, with PBS as vehicle. The 
procedure used for inducing allergic asthma is 
summarised in Figure 1. 
 
Sensitization, airway OVA challenge and 
treatments 
 
For sensitization of the mice, 40 µg of OVA plus 
2.6 mg of Al(OH)3 in PBS (200 µL) were given 
intraperitoneally on days 0 and 7. The mice were 
thereafter administered 5 % OVA in PBS from 
days 21 to 32. Dexamethasone and picroside 
were given once per day from day 19th to 25th. 
Some mice were sacrificed on 24th day, and 
broncho alveolar lavage was carried out to 
assess lung eosinophilia. 
 
Measurement of airway hyper-
responsiveness (AHR) and collection of BALF 
 
The measurement of AHR was carried out as  

 

 
Figure 1: Procedure used for triggering allergic asthma in the mice 
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described previously [9]. On day 33, the mice 
were sacrificed under ether anaesthesia, and 
their BALF portions were harvested for 
differential cell counting and estimation of 
cytokine levels. The whole procedure was carried 
out as described earlier [9]. 
 
Evaluation of cytokines and OVA-specific 
Immunoglobulin E (IgE) 
 
Serum cytokine (IL-5, IL-4 IL-13 and IFN- γ) were 
estimated using ELISA (R & D Systems) kits in 
line with the manufacturer’s guidelines. The 
assay of OVA-specific IgE, was done using a 
microtiter plate as described previously in 
literature [9,10]. 
 
Western blotting analysis for protein 
expression 
 
The lungs were homogenized in buffer and their 
protein concentrations were determined with 
Bradford method. Protein expression was 
measured using western blotting as described 
previously [2]. 
 
Histological examination 
 
After the collection of BALF from the lungs, the 
left lung was carefully isolated and subjected to 
fixation in neutral buffered formalin (10 %) for 24 
h. The specimens were subjected to dehydration 
and subsequently paraffin-embedded. 
Thereafter, 5-μm sections of the fixed and 
embedded tissues were subjected to H & E 
staining. Histological analysis was carried out as 
described previously [8]. 
 
Statistical analysis 
 
Data are shown as mean ± SEM. Statistical 
analysis was done using Students t-test with 
GraphPad prism 7 software. Values of p < 0.05 
were considered as indicator of significant 
difference. 
 
RESULTS 
 
Picroside I reduced AHR in experimental 
asthma model 
 
The airway resistance developed by treatment 
with methacholine at concentrations ranging from 
0 to 16 mg/ml was considerably enhanced in the 
OVA group. Assessment of the picroside I on 
AHR revealed no significant differences in the 
baseline airway resistance among the six groups. 
In contrast, there was significant decreases in 
airway resistance in the control, DEXA and 

picroside I (2 and 20 mg/kg)-treated groups 
(Figure 2). However, the decline in airway 
resistance in the 0.2 mg/kg was not significant. 
 
Picroside I influenced the release of Th1 and 
Th2 cytokines 
 
The Th2 cytokines IL-4 (Figure 3A), IL-5 (Figure 
3B) and IL-13 (Figure 3C) were measured in 
mice sera. Mice administered picroside I at 
concentrations of 0.2, 2 and 20 mg/kg exhibited 
no remarkable changes in these cytokines 
relative to control group. However, picroside I 
enhanced the secretion of IFN-γ (Figure 3D), a 
Th1 cytokine, dose-dependently, indicative of its 
impact on T cell differentiation. 
 

 
 
Figure 2: Estimation of airway hyper-responsiveness 
(AHR). Picroside I treatment caused reductions of 
airway hyper-responsiveness in mice. Data are shown 
as mean ± SEM;*p < 0.05; **p < 0.01, compared with 
sham/PBS group. (◊ = Control, □ = OVA control, Δ = 
DEXA (0.7 mg/kg), ● = PS-1 (0.2 mg/kg), ♦ = PS-1 (2 
mg/kg), ■ = PS-1 (20 mg/kg) 
 
Picroside I reduced OVA-associated IgE 
levels 
 
Picroside 1 administration (0.2, 2 and 20 mg/kg) 
did not resulted in any marked alterations in the 
OVA-associated IgE levels, when compared to 
the control group (Figure 4). 
 
Picroside I attenuated airway inflammation 
 
Mice BALF was analysed for inflammatory cells. 
Only a few inflammatory cells were observed in 
the control group. In contrast, there were marked 
increases in the population of inflammatory cells 
in mice sensitized and challenged with OVA. The 
impact of picroside I on allergen-triggered 
inflammatory cell penetration was determined in 
mice administered 3 varied concentrations of 
picroside I. As depicted in Table 1, picroside I at  
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Figure 3: Effect of picroside I on Th1 and Th2 release: 
IL-4 (A), IL-5 (B) IL-13 (C), and IFN-γ (D) IL-4, IL-5, IL-
13 and IFN-γ levels in BAL fluid. Data are shown as 
mean ± SEM; *p < 0.05, **p < 0.01, vs sham/PBS 
 

 
 
Figure 4: Effect of picroside I on the release of OVA-
specific IgE, as evaluated by ELISA and presented as 

arbitrary units. Data are shown as mean ± SEM; *p < 
0.05, compared with sham/PBS 
 
0.2, 2 and 20 mg/kg inhibited allergen-triggered 
inflammatory cell infiltration. Nonetheless, in the 
group given 0.2mg/kg, the infiltration of 
inflammatory cells was profound, when 
compared to other picroside I-treated groups. 
The anti-inflammatory effect of picroside I was 
evident from the histological examination of H & 
E stained sections of lung (Figure 4A). A 
remarkable increase in inflammatory cells in the 
airway was found in OVA-adminstrated mice, 
when compared with PBS-treated control mice. 
However, there were remarkable reductions in 
infiltration of inflammatory cells in mice 
administered different concentrations of picroside 
I. 
 

 
 
Figure 5: (A) Picroside I administration considerably 
decreased airway infiltration of inflammatory cells. (B) 
Quantitative determination of inflammation using 
inflammation score 

 
Table 1: Effect of picroside I on total cell count and differential cell count 
 
TCC 
(x 104/ml) 

Differential count (%) 
Macro Mono Eosino Neutro 

SHAM/PBS/VEH 3.1±1.4 37.5±4.4 43.1±4.2 1±0.12 2±0.3 
OVA/OVA/VEH 55.2±4.3** 10.6±3.1* 11.4±2.3* 57.1±3.2** 23.2±3.4* 
PS-I-0.2mg/kg 37.2±9.4* 15.2±3.2* 18.5±3.5 28.5±4.1* 15.2±2.2 
PS-I -2mg/kg 12.3±2.2 24.5±4.5 22.1±4.3 8.4±3.1 10.4±1.4 
PS-I -20mg/kg 8.5±3.6 40.1±4.6 40.2±4.3 3.2±0.2 2.6±0.4 
OVA/OVA/DEXA 10.4±2 24.4±5.2 37.2±2.4 10.4±5 10.3±2.2 
Data are shown as mean ± SEM. *p < 0.05, **p < 0.01, compared with sham/PBS 
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Figure 6:  (A) Effect of picroside 1 on pSTAT6, 
GATA3 and T-bet expressions, as determined using 
western blot; (B) densitometric analysis of pSTAT6, 
STAT6, GATA3 and T-bet expressions 
 
Picroside I modulated pSTAT6, GATA-3 and 
T-bet  expressions in lung tissue 
 
The expressions of pSTAT6, GATA-3 and T-bet 
in lung tissue homogenates were determined in 
control, OVA control, DEXA-administrated, and 
picroside I-treated mice. There were no 
expressions of pSTAT6, GATA-3 and T-bet in 
control mice. However, the expressions of 
pSTAT6 and GATA-3 were highly upregulated in 
OVA control mice. In picroside I-treated group, 
the expressions of pSTAT6 and GATA-3 were 
downregulated, indicating an inhibitory effect on 
Th2 cell differentiation (Figure 6). The picroside 
1-induced decreases were concentration-
dependent, but there was no detectable 
expression in the 20 mg/kg picroside 
administrated group. The dose-dependent 
modulation of T-bet expression by picroside I 
further confirmed that the decrease in Th2 
cytokine release was due to modulation of 
GATA3 by picroside I. 
 
DISCUSSION 
 
The spotlight in the development of drugs for 
asthma currently is either on improving the 
efficiency of available drugs or searching for 
novel compounds that can target the Th2-specific 
transcription factors [11]. The latter is based on 
the central and principal function of Th2 
cytokines in escalating inflammation of airway 
and the transcription factor genes that control 
their production. However, this approach requires 
inhibition of the monoclonal antibodies and Th2-
cell transcription factors [3,12]. 
 
The transcription factor family GATA which 
includes 6 members, harbours a prevalent DNA 
binding domain that is evolutionarily preserved 
across vertebrates. With respect to the immune 
system, GATA3 is the imperative among all 
members of GATA family [13,14-16]. This 
transcription factor is regarded as the main 
controller of Th2 cell differentiation. It is a 
downstream gene expressed after IL-4-induced 

STAT6 phosphorylation [17,18]. Coordinated 
control of Th2 cytokines is vital for an allergic 
response such as asthma. The cytokines have a 
major function in AHR advancement, IgE 
generation, eosinophills of airway, and high 
mucus secretion, all of which are the main 
features of allergic asthma [12,19]. Furthermore, 
T-bet transcription factor along with GATA-3 
maintains a suitable Th1/Th2 cell ratio in the 
body under normal physiologic conditions. An 
imbalance in this ratio may result in a disease 
condition. The two transcription factors control 
the expression of each other. An increase in the 
expression of one subsequently suppresses the 
expression of the other. Therefore, T-bet/GATA-3 
ratio is used to investigate immune equilibrium in 
the Th1/Th2 responses in asthma [9]. Enhanced 
expression of T-bet transcription factor shifts the 
equilibrium to Th1, and causes increased release 
of Th1 cytokines [3,20].  
 
In the current investigation, standard OVA-
triggered murine model of asthma was used to 
study the anti-asthmatic activity of picroside I. It 
was observed that picroside I abridged the 
employment of inflammatory cells to the 
microenvironment of the lungs. In this model, 
picroside I caused decrease in the methacholine-
triggered AHR in OVA-immunized asthmatic 
mice. In addition, it caused reduction in the 
release of Th2 cytokines by Th2 cells and 
production of OVA-specific IgE in a 
concentration-dependent fashion. Histology 
results showed absence of inflammation in the 
lung sections around the bronchioles in the 
control group. However, in the OVA control 
group, maximum inflammation was observed. 
Picroside I reduced the inflammation significantly 
at its higher dose. It also downregulated pSTAT6 
and GATA3 expressions. Reduction in the 
expression of these two transcription factors is 
related to the reduction in the release of 
cytokines, IgE production and airway eosinophilia 
or airway inflammation. In addition, picroside I 
treatment dose-dependently increased the serum 
levels of IFN-γ, a Th1 cytokine, and the 
expression of T-bet in the lung dose 
dependently.  
 
T-bet expression varied indirectly with that of 
GATA3 expression, i.e., for a decrease in GATA3 
expression, there was a corresponding increase 
in T-bet expression. Therefore, it can be 
postulated that picroside I attenuates asthma 
features in a mouse model of asthma by altering 
T-bet/GATA-3 ratio which reflects alterations in 
the Th1/Th2 balance. Furthermore, picroside I 
suppressed STAT6 phosphorylation which 
resulted in decreased GATA3 expression and 
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increased expression of T-bet at increasing 
doses of picroside I. 
 
CONCLUSION 
 
The findings of this study show that picroside I 
suppresses asthma phenotypes by altering T-
bet/GATA-3 ratio, thereby altering Th1/Th2 
equilibrium in a murine model of asthma. 
Therefore, picroside I is a potential therapeutic 
agent for the management of asthma via 
amelioration of allergic responses. 
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