Forsythia suspensa extract has inhibitory effect on proliferation and apoptosis of A549 lung cancer cells

Wei-guo Zhang*, Qin Liu, Cai-peng Lei
Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The Department of Surgical Oncology of the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China

*For correspondence: Email: zhangweiguo133@163.com; Tel: +86 0379-64830634

INTRODUCTION

Morbidity and mortality from lung cancer account for 13 and 19.4 %, respectively, worldwide [1]. Lung cancer is classified into small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). The latter (NSCLC) accounts for most (about 80 %) lung tumors. At present, early-stage NSCLC is treated by surgical intervention, while mid-late NSCLC is treated with radiotherapy and chemotherapy. Although effective for some patients in the short run, radiotherapy and chemotherapy are associated with adverse effects, toxicity, high...
recurrence of tumor and poor prognosis [2]. Therefore, it is necessary to reduce the side effects of chemotherapy drugs by searching for more effective anticancer drugs with lower toxicity. This has been a major challenge to medical science.

Forsythia suspensa is a very valuable plant in Wuzhou of China. Studies have shown that *Forsythia suspensa* has anti-aging, blood pressure-lowering, hypoglycemic and immunity-enhancing properties [3]. It also has antioxidant activity [4], and exerts cytotoxic effects on various malignant tumors [5,6]. This study was carried out to investigate the effect of *Forsythia suspensa* extract on proliferation and apoptosis in A549 human lung cancer cells.

EXPERIMENTAL

Materials

Human lung cancer cell line (A549) was purchased from the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. *Forsythia suspensa* was got from Wuzhou, China. RPMI1640 culture medium was product of Gibco Company, USA). Calf serum and phosphate buffered saline (PBS, American hyclone); dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT), dimethyl sulfoxide (DMSO), propidium iodide (PI) and trypsin were obtained from Sigma-Aldrich (America). Caspase-3, caspase-8, caspase-9, Ki-67, bcl-2 p21 ras monoclonal antibodies, and SP generic kits were purchased from American NeoMarkers (San Francisco, USA).

Samples of *Forsythia suspensa* were collected from Wuzhou City, Guangxi Province, China in September 2017. Taxonomic identification of the plant was done by Professor Xia Cheng of Henan University of Traditional Chinese Medicine in China. A voucher specimen (no. FSE 20170323) was deposited in the herbarium of College of Pharmacy, Henan University of Traditional Chinese Medicine, China for future reference.

Instrumentation

The instruments used were 96-well plates (Corning Company, Wuhan, China); automatic CO₂ incubator (DuPont Company of America Napoc6100); 450 enzyme standard instrument (American BioRad); inverted microscope (Olympus CX41-32C02, Japan); 4 % hope blue mother liquor (Japanese BigWood Industrial Co. Ltd) and LKB- ultrathin sections machine (Sweden). Others were YZ-1450 laminar flow ultranet work station (Suzhou Purification Equipment Company, Suzhou, China); elite flow cytometer (Coulter, USA); blood cell counting plate; vacuum drying oven (DZF-6021 type, Shanghai Fine Macro Experiment Equipment Limited), and ultrasonic cleaner CQ25-12 type (Shanghai Scientz Biotechnology Research Institute).

Preparation of FSE

Dry leaves of *Forsythia suspensa* (80 g) were ground and extracted three times by refluxing with 90 % ethanol, each time for 2 h. The extracts were pooled and concentrated under reduced pressure to obtain FSE.

Cell culture

The A549 cells were cultured in RPMI-1640 medium (Gibco, Rockville, MD) containing 10 % (v/v) fetal bovine serum (FBS, Hyclone, Logan, UT) and 1 % Penicillin Streptomycin (100 U/mL and 100 μg/mL, respectively) at 37 °C in a humidified atmosphere containing 5 % CO₂, with 0.25 % trypsin digestion batches. The logarithmic phase of the cells were used for the study.

Drug sensitivity test

Cells at the logarithmic growth phase (in RPMI1640 medium) at a concentration of 1.0 × 10⁵ cells/mL of cell suspension, were seeded in 48-well plates and cultured at 37 °C for 24 h, until the cells became adherent. FSE at different final concentrations (30, 60, 120, 240 μg/mL) were added to different wells, and the wells were incubated for different periods (24, 48 and 72 h) at 37 °C. A well containing 20 μg/mL cisplatin served as positive control, while another well containing saline in place of FSE served as negative control.

Cell morphology assay

A suspension of A549 cells at the logarithmic growth phase in RPMI 164 medium was adjusted to a concentration of 1.0×10⁵ cells/mL in a 48-well culture plate, and cultured for 24 h at 37 °C to achieve adherence. The wells were grouped into two. One group (experimental group) received different concentrations of FSE (62.5, 125 or 250 μg/mL) in the culture medium, while the other group (control group) received 0.04 % DMSO in place of FSE. The cells were observed under inverted microscope after 24, 48 and 72 h for changes in cell size, cell membrane and nucleus.
Growth curve and doubling time (TD) of A549 lung cancer cells

The A549 cells at logarithmic growth phase at a concentration of \(1 \times 10^5\) cells/mL were seeded in 24-well plates. One milliliter was taken from each of three wells at the same time point daily, and digested. The number of cells per well was counted using a hemocytometer, and the mean number of cells was determined. Counting was done for 8 days. A growth curve was plotted with mean cell count as vertical axis, and time as horizontal axis. Doubling time (TD) for the human lung cancer A549 cells was calculated using Eq 1.

\[TD = \frac{\log 2}{\log N_t - \log N_o} \]

where \(t\) is time interval, while \(N_o\) and \(N_t\) are the initial mean count and mean count after time \(t\), respectively.

MTT assay

A suspension of the A549 cells (0.2 mL) at logarithmic phase was seeded in a 96-well plate with each well containing \(5 \times 10^5\) cells, and cultured overnight for cell adhesion. In the experimental group, the original culture medium was drained, and replaced with different concentrations of freshly-prepared FSE (one concentration in 24 wells, and 6 wells per group). The wells of the control group medium contained 0.04 % DMSO, while wells without cells served as blank control. All wells were incubated for 24, 48, 72 and 96 h at 37 °C in a humid atmosphere containing 5 % CO₂. The supernatant was discarded, and 20 μL of MTT solution (5 g/L) was added to each well and incubated at 37 °C for 4 h. Then, the supernatant was carefully removed by suction, and 150 μL DMSO was added to each well to dissolve the crystals. The absorbance of each solution was read at 490 nm against blank control, and the results were used for calculating the growth inhibition rate.

FCM assay

A suspension of A549 human lung cancer cells (5.0 \(\times\) \(10^5\) cells/mL) at logarithmic growth phase was seeded in 24-well plates (100 μL in each well), and cultured in RPMI 1640 medium for 24 h for adherence. Thereafter, FSE was added to a final concentration of 40 μg/mL. Wells in the control group contained an equivalent volume of normal saline. The A549 cells at logarithmic phase were digested with 0.25 % trypsin, and \(2 \times 10^5\) cells were seeded into a 6-well plate and cultured overnight for cell adhesion. The culture medium was removed, and 3 mL of FSE was added to different cells to final concentrations of 25, 50, 100 and 200 μg/mL. Each FSE concentration was replicated in six parallel wells. In the control wells, FSE was replaced with an equivalent volume of 0.04 % DMSO. The plates were incubated for 24 and 48 h; the glass slides were then taken out, dried and fixed with 4 % paraformaldehyde for 10 min at 4 °C according to instructions contained in the operation manual of S-P kit. The plates were observed for appearance of clear brown granules which is indicative of positive cells.

The presence of Bcl-2 and p21 ras in cytoplasm is indicative of positive expression; Ki67 antigen is indicative of positive expression in the nucleus, caspase-9 is an index of positive expression in the cytoplasm and the nucleus; while caspase-3 and caspase-8 indicate positive expression in the cytoplasm or cytoplasm and nuclei. They are expressed less in cells without changes in color, or lightly-colored cells. The cells in the FSE plates and control plates were observed at high magnification (× 400) in 5 fields, and positive cells were counted and expressed as percentage of the total number of cells.

Statistical analysis

All data are expressed as mean ± standard error of mean (SEM), and processed using SPSS 16.0 (SPSS Inc., Illinois, Chicago, USA). They were analyzed by one-way analysis of variance.
ANOVA) followed by Dunnett’s t-test. \(P < 0.05 \) was considered statistically significant.

RESULTS

Effect of FSE on proliferation of A549 cells

FSE at different concentrations significantly inhibited the proliferation of A549 cells after 48 h when compared with control group \((p < 0.05)\). The inhibitory effect was concentration-dependent. These results are shown in Table 1.

Effect of FSE on cell morphology

Under the inverted microscope, the control group of lung cancer A549 cells grew densely, with overlapping clusters, as a long fusiform or polygon, without direction and with clear cellular edges. On the other hand, A549 cells treated with FSE at concentrations of 10 and 20 \(\mu g/mL \) showed reduction in number of cells, and no obvious morphological changes. When the concentration of FSE reached 40 \(\mu g/mL \), the cell volume shrank, becoming smaller; and the cells were fewer and separated, with many floating particles in the culture medium. At concentrations of 160 and 320 \(\mu g/mL \) of FSE, there were very clear and obvious changes in cell morphology, and evidence of cell disruption and higher cell death.

Inhibitory activity of FSE

Results from MTT assay showed that FSE exerted a concentration and time-dependent inhibitory effects on the growth of human lung cancer A549 cells (Table 2). The inhibitory effect was highest at a concentration of 320 \(\mu g/mL \). In addition, for each FSE concentration, the inhibitory effect increased with time and became maximum at 96 h.

Effect of FSE on A549 cell apoptosis and cell cycle

FSE at a concentration of 40 \(\mu g/mL \) brought about arrest of cell cycle at G0 / G1 phase in 24 and 48 h, and blocked the transition from G1 phase to S phase (Table 3). With increase in the G0 - G1 phase of the cell cycle, there was reduction in the number of cells in the S phase. The increases in percentage of cells in the G0/G1 phase, and decrease in cells in S phase, as concentration-dependent and time-dependent \((p < 0.01)\).

Table 1: Inhibitory effect of FSE on the proliferation of A549 cells

<table>
<thead>
<tr>
<th>Group</th>
<th>Concentration (µg/mL)</th>
<th>Absorbance (250 nm)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>-</td>
<td>0.326±0.002</td>
<td>-</td>
</tr>
<tr>
<td>Positive control</td>
<td>25</td>
<td>0.048±0.004</td>
<td>92.17±0.14</td>
</tr>
<tr>
<td>FSE</td>
<td>50</td>
<td>0.188±0.002</td>
<td>47.08±0.22</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.179±0.004</td>
<td>52.14±0.25</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.156±0.003</td>
<td>49.19±0.26</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.128±0.004</td>
<td>62.27±0.23</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 4); \(^1 p < 0.05\), \(^2 p < 0.01\) relative to control

Table 2: Inhibitory effects of FSE on A549 lung cancer cell growth

<table>
<thead>
<tr>
<th>Group</th>
<th>Concentration (µg/mL)</th>
<th>24h</th>
<th>48h</th>
<th>72h</th>
<th>96h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE</td>
<td>16</td>
<td>1.25</td>
<td>2.18</td>
<td>2.12</td>
<td>2.18</td>
</tr>
<tr>
<td>FSE</td>
<td>32</td>
<td>5.39</td>
<td>13.56</td>
<td>20.54</td>
<td>23.29</td>
</tr>
<tr>
<td>FSE</td>
<td>64</td>
<td>20.32</td>
<td>25.24</td>
<td>36.34</td>
<td>43.28</td>
</tr>
<tr>
<td>FSE</td>
<td>128</td>
<td>29.72</td>
<td>35.16</td>
<td>44.28</td>
<td>52.15</td>
</tr>
<tr>
<td>FSE</td>
<td>256</td>
<td>37.43</td>
<td>56.29</td>
<td>61.28</td>
<td>70.83</td>
</tr>
</tbody>
</table>

Table 3: Effect of FSE on cell cycle distribution of A549 cells at 24 and 48 h

<table>
<thead>
<tr>
<th>Group</th>
<th>G0/G1 (%)</th>
<th>S (%)</th>
<th>G2/M (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>49.26±3.14</td>
<td>44.25±3.02</td>
<td>9.14±1.05</td>
</tr>
<tr>
<td>FSE 24h</td>
<td>55.76±3.08</td>
<td>32.49±4.07</td>
<td>4.56±1.27</td>
</tr>
<tr>
<td>FSE 48h</td>
<td>60.76±4.07</td>
<td>19.56±5.05</td>
<td>3.26±1.01</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 8); \(p < 0.01 \) compared to control
DISCUSSION

The results obtained in this study show that FSE has significant time- and concentration-dependent inhibitory effects on the proliferation of A549 cells. The extract also exerted strong apoptotic effects on the A549 cells, as seen from the morphological changes in the cells. The dynamics of tumor cell proliferation are due to loss of control of cell cycle, resulting in uncontrolled G1 / S and G2 / M transformations. The cells were mainly in the active DNA synthesis S phase, which led to abnormal cell proliferation [5].

Thus, blockage of the G1/S phase and G2/M phase can effectively control the tumor cell cycle and inhibit tumor proliferation. In this study, results from cell cycle analysis showed that FSE reduced the number of A549 human lung cancer cells in G1, S and G2/M phases, leading to stagnation of the cell cycle and restraining of cell proliferation. Increased concentrations of aqueous fractions of FSE brought about enhanced effects on cell cycle arrest. This indicates that FSE causes lung cancer cell cycle arrest by regulation and inhibition of tumor cell mitosis.

Ki-67 antigen is a more positive marker of nuclear proliferation, and Ki-67 may be used as a biomarker for determining high risk individuals in pre-cancer population [7-9]. Ki-67 antigen assay results showed that FSE significantly decreased the expression of Ki-67 in A549 cells. This implies that a large number of the A549 cancer cells were in the stationary phase of cell cycle. In effect, FSE may contain active principles that regulate the gene which inhibits cancer cell mitosis, thereby inhibiting the growth of tumor cells. P21 ras cancer gene is involved in transmission of intracellular information which regulates the cell cycle, and it is the "initiation factor" in the occurrence of tumors [10-13]. The expression of p21ras antigen was also significantly decreased in the FSE-treated A549 cells, in a time- and concentration-dependent manner, when compared with untreated controls. Again, this is an indication that most of the cancer cells were in the S phase of the cell proliferation cycle. This supports the presence of anti-proliferative and mitosis-inhibiting agents in FSE.

Caspases are proteolytic enzymes which constitute key components of the apoptosis system. They are a family of cysteine proteases involved in regulation of apoptosis, which is considered to be key to cancer cell death [14-17]. In this study, FSE treatment led to significantly lowered expression of Bcl-2, and significant increases in the expression of caspase-9. These results demonstrate that the anti-proliferative effects FSE also involve the mitochondrial apoptotic pathway. Caspase-3 is a pro-apoptosis caspase. Its expression in the FSE-treated A549 human lung cancer cells was significantly higher than in the untreated control cells, indicating that FSE promotes apoptosis in these cells. Thus, FSE induced apoptosis by inhibiting the signal transduction pathway enzymes to achieve elevated expressions of the pro-apoptosis caspases 3, 8 and 9, as well as the apoptosis-related gene Bcl-2.

CONCLUSION

The findings of this study reveal that FSE has significant effect on the inhibition of proliferation and induction of apoptosis in human lung cancer A549 cells. These findings suggest that FSE might be a potent source of drugs for the treatment of lung cancer patients.

DECLARATIONS

Conflict of interest

No conflict of interest is associated with this work.

Contribution of authors

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. Wei-guo Zhang designed all the experiment and revised the paper. Qin Liu and Cai-peng Lei performed the experiment and wrote the manuscript.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/rea d), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

REFERENCES

17. Wu DC, Li S, Yang DQ, Cui YY. Effects of Pinus massoniana bark extract on the adhesion and migration capabilities of HeLa cells. Fitoterapia 2011; 82: 1202-1205.