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Abstract 

Purpose: To study the effect of different doses of dexmedetomidine on lung function and lung tissue 
cell apoptosis in a rat model of hyperoxic acute lung injury.  
Methods: Five groups of healthy male Sprague-Dawley rats were used: normal rats, untreated 
hyperoxic rats, and hyperoxic rats given 3 different doses of dexmedetomidine, with 20 rats in each 
group. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using 
enzyme-linked immunosorbent assay (ELISA). Parietal paraffin cuts were taken from the right upper 
lobe for measurement of apoptosis using in situ terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL), and the apoptosis index was calculated.  
Results: At 24 and 48 h, the levels of IL-6 and TNF-α in the hyperoxia model group were significantly 
higher than those in the normal control group, and their levels in the middle- and high-dose groups were 
markedly lowered, relative to untreated hyperoxia rats (p < 0.05). Apoptosis index in the hyperoxia 
model rats significantly increased, relative to normal rats (p < 0.05). The apoptosis index in the medium- 
and high-dose groups decreased significantly (p < 0.05).  
Conclusion: Dexmedetomidine inhibits inflammatory responses caused by high concentration of 
oxygen inhalation, minimizes lung injury, improves lung function and inhibits lung apoptosis.  
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INTRODUCTION 
 
Inhalation of high concentration of oxygen is one 
of the most common and necessary treatments 
in clinical rescue, and it plays an important role in 
maintaining stable organ function, preventing 
organ failure, gaining time for clinical treatment, 
and saving patients' lives [1]. However, it has 

been found that long-term inhalation of high 
oxygen concentration causes significant adverse 
reactions to organs, with the lungs as the most 
prone to hyperoxia-type acute injury. In severe 
cases, acute respiratory distress syndrome may 
develop, which seriously threatens the health 
and quality of life of patients [2].  
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Studies have shown that acute lung injury is 
closely related to oxidative stress, inflammatory 
response and apoptosis [3]. Hyperoxia may lead 
to accumulation of large amounts of ROS and 
promote the expressions of various inflammatory 
factors in the lungs. Dexmedetomidine is a highly 
selective α2 adrenergic receptor agonist that 
reduces catecholamine levels and inhibits 
apoptosis [4]. Research has shown that 
dexmedetomidine protects the lungs by 
controlling inflammatory response, reducing 
oxidative stress, and improving lung oxygenation. 
However, there are limited reports on its 
application in hyperoxic acute lung injury [5].  
 
This study was carried out to investigate the 
effect of dexmedetomidine on lung function and 
apoptosis in a rat model of hyperoxic acute lung 
injury.  
 
EXPERIMENTAL 
 
Animals 
 
A total of 100 healthy male SD rats provided by 
Guangdong Medical Experimental Animal 
Center, production license SCXK (Guangdong) 
2018-0035), were used. The rats had a mean 
weight of 223 ± 37 g. All rats were adaptively 
reared for 1 week at a temperature of 25 ± 2 ℃, 
humidity of 52 ± 5 % and 12-h day/12-h night 
photoperiod. 
 
This research was approved by the Animal 
Ethical Committee of Intensive Care Unit, The 
First People's Hospital of Jiangxia District, 
Wuhan, PR China (approval no. 201834004), 
and performed according to "Principles of 
Laboratory Animal Care" (NIH publication no. 85-
23, revised 1985) [6]. 
 
Main instruments and reagents 
 
The instruments and reagents used, and their 
suppliers (in brackets) were: oxygen box 
(Guangzhou Huayuehang Instrument Co. Ltd., 
model: H135); ultra-low temperature refrigerator 
(Shanghai Tianfeng Industrial Co. Ltd., model: 
TF-86-200-WA); electronic biological microscope 
(Shenzhen Chensheng Optical Instrument Co. 
Ltd., Model: SC-Y409A); cryogenic high speed 
centrifuge (Beijing Times Beili Centrifuge Co. 
Ltd., Model: GT16-3); arterial blood gas analyzer 
(Nanjing Baden Medical Co. Ltd., Model: BC-
5000); dexmedetomidine (Jiangsu Hengrui 
Pharmaceutical Co. Ltd., production batch 
number: 20170248, specification: 2ml: 200g); 
TNF-α detection kit (Shanghai Jimian Industrial 
Co. Ltd., specification: 96T); IL-6 detection kit 

(Beijing Rejing Biotechnology Co., Ltd., 
Specification: 40T). 
 
Grouping and establishment of animal model 
 
The 100 SD rats were randomly divided into 
normal control, hyperoxic model, low-dose 
dexmedetomidine (low-dose), medium-dose 
dexmedetomidine (medium-dose), and high-dose 
dexmedetomidine (high-dose) groups. Each 
group had 20 rats. The normal control group rats 
were fed normally without treatment. Rats in the 
hyperoxic model group were reared in a 
hyperoxic environment for more than 23 hours 
but less than 24 hours per day. The rats were 
given dexmedetomidine at a dose of 30 (low 
dose), 60 (medium dose) or 90 μg/kg (high 
dose). 
 
Treatment indicators 
 
The rats were anesthetized at 24 and 48 h after 
the test, and 0.6ml of arterial blood was taken 
from each rat. Oxygenation index and respiratory 
index were measured using an arterial blood gas 
analyzer and computed as in Eqs 1 and 2. 
 
OI = PPBABO/IOC …………… (1) 
 
RI = PDAGAO/ABOP …………… (2) 
 

ere OI is oxygenation index, PPABO is partial 
pressure of arterial blood oxygen, IOC is inhaled 
oxygen concentration, RI is respiratory index, 
PDAGAO is pressure difference in alveolar gas 
arterial oxygen and ABOP is arterial blood 
oxygen pressure. 
 
The levels of interleukin-6 (IL-6) and tumor 
necrosis factor-α (TNF-α) in each group were 
determined with ELISA. The lungs of each group 
of rats were separated, the upper lobes of the left 
lungs were subjected to H&E staining for 
determination of pathological changes. Paraffin 
sections of the right upper lobes were subjected 
to apoptosis determination using TUNEL assay, 
and the apoptosis index was calculated. 
 
Statistical analysis  
 
All statistical analyses were done with SPSS 
18.0 software package. Measurement data were 
subjected to multi-group comparison using single 
factor multi-sample method, while two-groups 
were compared with independent sample t-test. 
Count data comparison was performed with χ² 
test. Grade data comparison was performed 
using Ridit test. Values of p < 0.05 were taken as 
indicative of statistical significance of difference. 
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RESULTS 
 
Changes in oxygenation index and 
respiratory index amongst the groups  
 
As presented in Table 1, oxygenation index and 
respiratory index of hyperoxic model rats were 
markedly reduced at 24 and 48h, relative to 
control (p < 0.05). Compared with the hyperoxia 
model group, these indices were significantly 
increased in the middle-dose and high-dose 
groups (p < 0.05). 
 
Levels of IL-6 and TNF-α   
 
Table 2 shows that after 24 and 48h, the levels of 
IL-6 and TNF-α were markedly elevated in 
hyperoxic model rats, relative to their 
corresponding values in normal control rats, but 
were markedly higher than those in middle-dose 
and high-dose rats (p < 0.05). 
 
Lung pathology  
 
The alveolar structure of rats in the normal 
control group was clear without congestion and 
inflammatory cell infiltration. In the hyperoxic 
model group, the lung tissue was disordered, the 
number of alveoli was reduced, and inflammatory 
cell infiltration was obvious, with presence of 
edema. Lung tissue in low-dose group was 
similar to that in the hyperoxia model group, but 
with slight improvement. Lung injury in middle- 
and high-dose rats showed marked 

improvement, relative to hyperoxic model rats, 
but the middle-dose rats showed more obvious 
improvement. These results are shown in Figure 
1. 
 

 
 
Figure 1: Pathological changes in lung tissue of rats. 
A: normal control rats after 24 h; B: normal control rats 
after 48 h; C: hyperoxia model rats after 24 h; D; 
hyperoxia model rats after 48 h; E: low-dose rats after 
24 h; F: low-dose rats after 48 h; G: middle-dose rats 
after 24 h; H: middle-dose rats after 48 h; I: high-dose 
rats after 24 h; J: high-dose rats after 48 h 
 
Apoptosis in rat lung tissues  
 
There was marked increase in apoptotic index in 
hyperoxia model rats, relative to control rats (p < 
0.05). Although there was a reduction in 
apoptotic index of hyperoxia model rats, it was 
comparable with that of low-dose rats (p > 0.05). 

 
       Table 1: Changes in oxygenation index and respiratory index of rats (n = 20) 
 

Group 
Oxygenation index Respiratory index 

24h 48h 24h 48h 
Normal control 464.51 ± 15.96 453.15 ± 13.55 0.07 ± 0.03 0.08 ± 0.03 
Hyperoxia model 301.79 ± 13.41a 265.76 ± 16.27a 0.41 ± 0.06 a 0.51 ± 0.07 a

Low-dose 309.18 ± 11.75a 271.41 ± 13.14 a 0.39 ± 0.05 a 0.48 ± 0.06 a 
Middle-dose 379.18 ± 10.14ab 327.04 ± 11.65 ab 0.22 ± 0.03 ab 0.31 ± 0.07 ab

High-dose 375.68 ± 11.86abc 312.76 ± 11.93abc 0.21 ± 0.03 abc 0.32 ± 0.06 abc 
F 530.67 638.26 226.14 163.97 
P-value < 0.001 < 0.001 < 0.001 < 0.001 

Data are mean ± SD. aP < 0.05, vs normal control; bp < 0.05, vs hyperoxia model rats; cp < 0.05, vs low-dose rats 
 
Table 2: IL-6 and TNF-α levels amongst the groups (n = 20) 
 

Group 
IL-6 (pg/mL) TNF-α (pg/mL) 

24h 48h 24h 48h 
Normal control 23.31 ± 2.15 24.26 ± 1.07 32.06 ± 2.63 35.73 ± 1.28 
Hyperoxia model 32.82 ± 1.51 a 36.29 ± 1.08 a 56.81 ± 1.96 a 63.06 ± 3.24 a

Low-dose 31.46 ± 3.29 a 35.08 ± 2.73 a 55.14 ± 2.96 a 61.44 ± 3.28 a 
Middle-dose 25.96 ± 2.49 ab 27.28 ± 2.49 ab 45.97 ± 3.75 ab 49.76 ± 4.88 ab

High-dose 26.65 ± 1.81 abc 29.35 ± 2.31 abc 46.47 ± 2.42 abc 51.21 ± 4.62 abc 
F 58.06 123.38 245.08 176.89 
P-value < 0.001 < 0.001 < 0.001 < 0.001 

Results are mean± SD. aP < 0.05, vs normal control rats; bp < 0.05, vs hyperoxia model rats; cp < 0.05, vs low-
dose rats 
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Moreover, apoptosis index of lung tissue of rats 
was reduced markedly in middle- and high-dose 
rats (p < 0.05). These results are shown in 
Figure 2 and Table 3. 
 

 
 
Figure 2: Visual comparison of lung tissue apoptosis 
amongst the various groups. A: normal control rats 
after 24 h; B: normal rats after 48 h; C: hyperoxic 
model rats after 24 h; D; hyperoxia model rats after 48 
h; E: low-dose rats after 24 h; F: low-dose rats after 48 
h; G: middle-dose rats after 24 h; H: middle-dose rats 
after 48 h; I: high-dose rats after 24 h; J: high-dose 
rats after 48 h 
 
Table 3: Apoptosis index of rat lung tissues (n = 20) 
 

Group 
Apoptosis index

24h 48h
Normal control 0.14 ± 0.02 0.14 ± 0.02 
Hyperoxic model 0.38 ± 0.05 a 0.48 ± 0.05 a

Low-dose 0.35 ± 0.03 a 0.46 ± 0.03 a 
Middle-dose 0.26 ± 0.06 ab 0.34 ± 0.07 ab

High-dose 0.29 ± 0.06 abc 0.37 ± 0.04 abc 
F 79.36 177.86
P-value < 0.001 < 0.001 
Data are mean ± SD. aP < 0.05, vs normal rats; bp < 
0.05, vs hyperoxia model rats; cp < 0.05, vs low-dose 
rats   
 
DISCUSSION 
 
Inhalation of high concentrations of oxygen is a 
common and necessary treatment strategy for 
patients with severely compromised respiratory 
system. However, research has shown that high 
oxygen concentration exerts toxic effects on 
multiple organs, with the lungs being the most 
vulnerable [7]. Sprague-Dawley (SD) rats are 
similar to humans in tissue development, 
pathophysiology and immune response. Thus, 
they are now widely used in the study of lung 
diseases. In this study, SD rats were used to 
establish a hyperoxia acute lung injury model for 
studying the effects of different doses of 
dexmedetomidine on lung function and 
apoptosis. Dexmedetomidine is a dextro-isomer 
of α2-body adenosine receptor agonist with a 

short half-life. It has strong sedative, analgesic 
and anti-sympathetic effects, and its respiratory 
inhibition effect alleviates stress response during 
surgery and reduces the incidence of 
postoperative complications [8].  
 
In the past, hypoxia was diagnosed only through 
blood pressure, heartbeat, breathing, and 
changes in consciousness and skin color. The 
presence of cyanosis usually means that the 
arterial blood is highly hypoxic, but this is difficult 
to detect in patients with dark skin or moderate 
anemia [9]. Oxygenation index and respiratory 
index are usually used as indicators of lung 
function [10]. In this study, the oxygenation index 
and respiratory index of the hyperoxic model 
group were markedly reduced at 24 and 48h, 
relative to control. Compared with the hyperoxia 
model group, the oxygenation index and 
respiratory index of the middle- and high-dose 
groups were significantly increased. These 
indices were higher in low-dose group than those 
in hyperoxia model group, but the two groups 
were comparable, suggesting that hyperoxia 
caused severe lung damage which was 
significantly mitigated by dexmedetomidine. 
 
Studies have found that inflammatory response 
is one of the important mechanisms involved in 
hyperoxia lung injury [11]. The release of local or 
systemic cytokines in the early stage of 
hyperoxia lung injury destroys the functions of 
endothelial and epithelial cells. Protein-rich 
edema fluid accumulates in the alveolar epithelial 
space, causing infiltration of a large number of 
inflammatory cells including neutrophils and 
macrophages, and activation of fibroblasts in the 
lung, thereby further aggravating lung injury [12]. 
It is known that IL-6, a lymphokine produced by 
activated T cells and fibroblasts, induces 
synthesis of acute phase response proteins [13]. 
The synthesis and secretion of IL-1 is induced by 
TNF-α, a pro-inflammatory factor, thereby 
inducing pulmonary vascular endothelial cell 
injury and pulmonary edema [14]. The results of 
this study suggest that dexmedetomidine 
significantly reduces lung tissue inflammation 
and lung injury, which is consistent with the 
results of Liu et al [15].  
 
Apoptosis is autonomous and orderly death of 
cells, a process regulated by genes so as to 
maintain homeostasis of the internal 
environment. It is an important histological 
feature of acute lung injury. The pathogenesis of 
acute lung injury is closely related to apoptosis. 
However, moderate apoptosis of cells is 
beneficial for the removal of inflammatory cells 
and abnormally proliferating cells from the lung 
[16]. High concentration of oxygen promotes the 
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expression of inflammatory factors e.g. TNF-α in 
the lung. The TNF-α forms a death-inducing 
signal complex by binding to its receptor, thereby 
triggering the caspase cascade and apoptosis 
[17]. This study has demonstrated that 
dexmedetomidine inhibited apoptosis of lung 
tissue cells. It significantly inhibited the 
inflammatory response caused by inhalation of 
high concentration of oxygen, reduced lung 
injury, improved lung function, and inhibited 
apoptosis of lung tissue cells. 
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