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Abstract 

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)-
induced neurotoxicity. 
Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This 
model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT 
and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to 
quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), 
malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS).  
Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. 
However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although 
incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment 
with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative 
stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y 
cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin 
led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine 
ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). 
Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of 
NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use 
of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. 
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INTRODUCTION 
 
Parkinson’s disease (PKD) is a nerve 
degenerative disease without effective 
neuroprotective treatment [1]. However, there is 

currently no treatment for PKD. Improper balance 
between the intracellular antioxidant and 
oxidation systems contributes to the 
development of PKD [2]. Of note, NRF2 protects 
against oxidative neurological stress [3] and 
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plays a central role in the biology of PKD. NRF2-
mediated transcriptional deletion increases the 
susceptibility of dopaminergic neurons to 
oxidative stress during PKD [4], and mice that 
are deficient in NRF2 are more susceptible to 
toxin-mediated damage of neurons in the 
substantia nigra than wild-type mice [5]. 
Moreover, activation of NRF2 leads to 
neuroprotection against toxins [6,7]. Therefore, 
NRF2 seems to be a potentially valuable target 
for new therapies aimed to treat or prevent PKD. 
 
Hesperidin is a common, inexpensive plant 
flavonoid that is derived from citrus plants, such 
as sweet oranges and lemons [8]. Hesperidin 
has many pharmacological properties, including 
anti-hypercholesterolemia, anti-inflammatory, 
antioxidant, and neuroprotective effects [8]. 
Hesperetin is an aglycone of hesperidin that is 
produced by the intestinal microflora and has 
been shown to have anticancer effects in a 
mouse model of prostate cancer [9]. Recently, 
hesperidin was reported to prevent H2O2-induced 
oxidative damage by upregulating the NRF2 
pathway [10]. Important to the topic of this work, 
hesperetin has been shown to suppress 
oxidative stress and protect against Alzheimer’s 
disease [11]. However, the potential benefits and 
mechanisms of hesperetin in the treatment of 
PKD remain poorly understood to date. 
 
In this study, we established a 6-OHDA-induced 
cell model of PKD to evaluate the therapeutic 
potential of hesperetin and the role of the NRF2 
signaling pathway in PKD. 
 
EXPERIMENTAL 
 
Cells and treatment 
 
Cells were cultured in DMEM-F12 medium 
(Lonza, Basel, Switzerland) with 10 % FBS 
(Gibco, Gaithersburg, MD, USA) in a constant 
temperature incubator. Cells were treated with 
10, 20, or 50 μM hesperetin for 2 h and then 
treated with 100 μM 6-OHDA for 24 h. 
 
Evaluation of cell viability 
 
Cells (1 × 103 per well) were incubated with 5 
mg/mL of MTT for 4 h. After removing the media, 
cells were incubated and the absorbance was 
read at 490 nm. 
 
Assessment of lactate dehydrogenase (LDH) 
release 
 
After incubation with hesperetin and 6-OHDA, 
100 μL of cell culture medium was incubated with 

LDH reaction reagent for measurement of LDH 
release. 
 
Flow cytometry 
 
Cells were harvested and resuspended in 
binding buffer with R-phycoerythrin (PE; 5 µL, 
100 µg/mL) and ribonuclease (1 U/mL). The cells 
were incubated with 5 μL of FITC-conjugated 
Annexin V before analyzed by FACS flow 
cytometry (Attune; Life Technologies, Darmstadt, 
Germany). 
 
Measurement of oxidative stress 
 
After treatment with 10, 20, or 50 μM hesperetin 
for 2 h and incubation with 100 μM 6-OHDA for 
24 h, cells were harvested, and levels of MDA, 
SOD, GSH, and ROS were determined using 
commercially available kits (Beyotime 
Biotechnology, Shanghai, China). 
 
Western blot assay 
 
Cell proteins were extracted and total protein 
concentrations were determined via BCA assay. 
Proteins were separated by SDS-PAGE and then 
transferred onto a PVDF membrane, which was 
then incubated with primary antibodies against 
cleaved caspase-3, cleaved caspase-9, NRF2, 
HO-1, GCLM, GCLC, and GAPDH (Abcam, 
Cambridge, MA, USA) followed by a secondary 
antibody. Relative densitometries were analyzed 
using Image J software and compared to 
GAPDH as a loading control. 
 
Statistical analysis 
 
The results were shown as mean ± SD. Graph 
Pad Prism 5 was used to conduct one-way 
analysis of variance. Comparisons resulting in p 
< 0.05 were considered statistically significant.  
 
RESULTS 
 
Hesperetin protected against 6-OHDA-
mediated decrease in cell viability 
 
As expected, treatment of SH-SY5Y cells with 6-
OHDA (100 μM) decreased cell viability and 
promoted LDH release relative to healthy control 
cells. However, pre-treatment with hesperetin 
reversed these toxic effects in a dose-dependent 
manner (Figure 1). 
 
Hesperetin protected against 6-OHDA-
mediated apoptosis 
 
Treatment with 6-OHDA led to increased 
apoptosis relative to control cells (Figure 2 A). 
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However, pre-treatment with hesperetin reversed 
this effect (Figure 2 A). Expression of several 
proteins involved in apoptosis, such as cleaved 
caspase-3 and -9, was increased after incubation 
with 6-OHDA, but this effect was attenuated in 
cells pre-treated with hesperetin (Figure 2 B). 
 

 
 
Figure 1: Hesperetin reversed the effects of 6-OHDA 
on cell viability. (A) Chemical structure of hesperetin 
(B) Cell viability was measured by MTT assay. (C) 
LDH release was measured; #p < 0.05; **, ##p < 0.01  
 

 
 
Figure 2: Hesperetin reduced apoptosis of cells 
treated with 6-OHDA. (A) Cellular apoptosis was 
detected by flow cytometry. (B) Protein expression 
was detected by western blots; **, ## p < 0.01 
 
Hesperetin reversed the effects of 6-OHDA on 
oxidative stress 
 
The expression of antioxidant enzymes, including 
GSH and SOD, was decreased by 6-OHDA 
treatment. However, hesperetin reversed these 
results (Figure 3 A and B). Similarly, the levels of 
MDA and ROS were increased after treatment 
with 6-OHDA but were relatively suppressed 
after pre-treatment with hesperetin (Figure 3 C 
and D). 
 

Hesperetin reversed the effects of 6-OHDA on 
NRF2 pathway 
 
Treatment with 6-OHDA decreased the 
expression of NRF2, HO-1, GCLC, and GCLM 
compared to control cells (Figure 4). However, 
pre-treatment with hesperetin caused over 
activation of the NRF2 pathway, as seen by 
relative increases in expression of NRF2, HO-1, 
GCLC, and GCLM (Figure 4). 
 

 
 
Figure 3: Hesperetin reversed the effects of 6-OHDA 
on GSH (A), SOD(B), MDA(C) and ROS(D) level. # p < 
0.05; **, ## p < 0.01 
 

 
 
Figure 4: Hesperetin reversed the effects of 6-OHDA 
on the NRF2 pathway. Western blotting was used to 
measure protein expression. **, ## p < 0.01 
 
DISCUSSION 
 
Flavonoids may play a useful role in the 
prevention and treatment of PKD due to their 
antioxidant activities [12]. Naringenin, a flavonoid 
found in grapefruit, has been shown to provide 
neuroprotection in PKD [13]. In this work, 
hesperetin, a flavonoid, had neuroprotective 
effects in a cell model of PKD through its 
antioxidant and anti-apoptotic effects. 
 
Treatment with 6-OHDA promotes ROS 
accumulation and apoptosis of dopaminergic 
cells in rats [14] and is thus commonly used to 
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create in vitro models of PKD [15]. Importantly, 
SH-SY5Y cells express tyrosine hydroxylase and 
mimic dopaminergic neurons [16]. Studies have 
shown that 6-OHDA promotes oxidative stress by 
uncoupling oxidative phosphorylation and 
inducing toxicity, similar to native pathological 
processes in PKD [17]. In this work, SH-SY5Y 
cells were treated with 6-OHDA to create an in 
vitro model of PKD. The death of dopamine 
neurons is one of the characteristics of PKD. 
Therapeutics that counteract the effects of 
neurotoxins, such as 6-OHDA, to protect neurons 
may prove valuable for the treatment of PKD 
[18]. 
 
This study showed that pre-treatment with 
hesperetin reversed 6-OHDA-mediated 
reductions in cell viability, consistent with a 
previous report showing that hesperetin 
protected SH-SY5Y cells against rotenone-
induced toxicity [19]. Necrosis and apoptosis are 
major forms of cell death during PKD [20]. A 
previous study indicated that LDH is released 
into the supernatant when necrosis occurs [18]. 
However, another report revealed that pre-
administration of hesperetin decreased neuronal 
cell apoptosis [21]. Consistent with these prior 
studies, we found that treatment with hesperetin 
demonstrated protective effects against 6-OHDA 
toxicity through inhibition of LDH release and 
prevention of apoptosis. 
 
PKD has been suggested to be the result of free 
radical-induced oxidative stress [22]. Under 
normal conditions, various antioxidant enzymes, 
including GSH and SOD, detoxify the cell by 
removing free radicals [23]. The accumulation of 
MDA and ROS can upset the balance of 
antioxidant defense systems and result in 
oxidative stress [2]. Previous studies showed that 
hesperetin exerts a neuroprotective effect by 
activating the antioxidant enzyme system and 
inhibiting oxidative damage [24] and prevents 
ROS accumulation in a rotenone-induced SH-
SY5Y cell model [19]. Consistently, this study 
found that hesperetin had antioxidant effects in 
cells treated with 6-OHDA treatment, primarily 
through increasing the expression of antioxidant 
enzymes (GSH and SOD) and reducing the 
relative concentration of markers of oxidative 
stress (MDA and ROS). 
 
Several signaling pathways play important roles 
in the antioxidant response to PKD [25]. NRF2 is 
a key regulator of cytoprotective genes, such as 
HO-1, GCLC, and GCLM, and plays a central 
role in managing oxidative stress during PKD 
[13]. Activation of the NRF2 pathway, as 
evidenced by the increased expression of NRF2, 
HO-1, GCLC, and GCLM, leads to 

neuroprotection of SH-SY5Y cells treated with 6-
OHDA [13]. A previous study showed that 
hesperetin exerts neuroprotective effects by 
activating the NRF2 pathway [26]. Similarly, we 
found that hesperetin upregulated NRF2, HO-1, 
GCLC, and GCLM, thus activating the NRF2 
pathway and reducing oxidative stress. However, 
further investigations in animal models of disease 
will be required to more completely reveal the 
neuroprotective role of hesperetin in the context 
of PKD. 
 
CONCLUSION 
 
Hesperetin protects against apoptosis and 
oxidative stress in a 6-OHDA-induced SH-SY5Y 
cell model of PKD. These antioxidant effects 
were mediated through activation of the NRF2 
pathway. These findings indicate that hesperetin 
may have a neuroprotective role in the 
management of PKD. 
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