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Abstract 

Purpose: To investigate the effect of eriodictyol on spinal cord injury (SCI) and its underlying 
mechanism of action. 
Methods: Thirty Sprague-Dawley rats were assigned to sham, SCI, and eriodictyol-treated groups (SCI 
+ Eri; 10, 20, and 50 mg/kg). Moderate spinal cord contusion injury was induced to model SCI. 
Locomotor recovery was assessed based on Basso, Beattie, and Bresnahan (BBB) score. Pain was 
evaluated by paw withdrawal threshold (PWT) and latency (PWL), and spinal cord water content was 
measured. Tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) 
expression were determined by enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase 
quantitative polymerase chain reaction (RT-qPCR). Immunoassay was used to determine 
malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase 
(GSH-PX) levels while Western blotting was employed to evaluate nuclear factor erythroid 2-related 
factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), and phosphorylated NF-κB 
(p-NF-κB) levels. 
Results: Eriodictyol elevated BBB score, PWT, and PWL in SCI rats but reduced spinal cord water 
content (p < 0.05). Eriodictyol treatment down-regulated TNF-α, IL-1β, IL-6, and MDA, whereas SOD, 
GSH, and GSH-PX levels were elevated (p < 0.05). Eriodictyol administration increased Nrf2 and HO-1 
levels but reduced p-NF-κB/NF-κB. 
Conclusion: This study provides a potential therapy to promote long-term functional recovery following 
SCI. 
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INTRODUCTION 
 
Car accidents and falls frequently cause spinal 
cord injury (SCI), a devastating and common 
condition of acute trauma [1]. This trauma can 
impair bowel and bladder function, mobility, and 

autonomic nerve function and is often 
accompanied by pressure ulcers and pain that 
directly damages patient health [2]. In terms of 
pathophysiology, secondary injuries that may 
occur after SCI include edema, secondary 
ischemia, oxidative stress injury, inflammatory 
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cell infiltration, and neuronal apoptosis [3-5]. 
Though spinal surgery and methylprednisolone 
are key interventions for SCI [4], there are 
currently no effective strategies for neurologic or 
functional recovery following SCI. Therefore, it is 
critical to develop new therapeutic strategies to 
promote functional recovery in patients with SCI. 
 
Nuclear factor-kappa B (NF-κB), heme 
oxygenase-1 (HO-1), nuclear factor erythroid 2-
related factor 2 (Nrf2), tumor necrosis factor-
alpha (TNF-α), interleukin-1 beta (IL-1β), and 
interleukin-6 (IL-6) play pivotal roles in oxidative 
stress and neuro-inflammation [6]. Though NF-
κB and HO-1/Nrf2 signaling have been shown to 
contribute to inflammatory and antioxidant 
responses after lipopolysaccharide (LPS) 
challenge [7], the roles of NF-κB and HO-1/Nrf2 
in SCI have not been clearly elucidated. 
 
Eriodictyol, a compound isolated from the plant 
Dracocephalum rupestre, is widely distributed in 
common foods [8]. Published studies have 
demonstrated that eriodictyol has a variety of 
biological effects, including the suppression of 
oxidative stress, inflammation, cell apoptosis, 
and osteoclast-related diseases [9]. Eriodictyol 
has been shown to elevate HO-1 levels by 
activating the Nrf2/antioxidant response element 
(ARE) pathway and to protect against hydrogen 
peroxide-induced neurotoxicity [10]. In LPS-
induced neuro-inflammation, eriodictyol blocked 
downstream translocation of NF-κB and thus 
attenuated amyloidogenesis and memory 
impairment [11]. However, the effect of 
eriodictyol on SCI and its molecular mechanism 
are still poorly understood.  
 
The present study demonstrates the protective 
properties of eriodictyol against SCI in rats and 
investigates the mechanism underlying its 
protective effects. This study identifies eriodictyol 
as a potential therapeutic strategy for patients 
with SCI.  
 
EXPERIMENTAL 
 
Animals  
 
A total of 30 male Sprague-Dawley rats (8 - 10 
weeks old; 250 ± 20 g) were bought from the 
animal breeding center of Fujian Medical 
University. The rats were maintained at 25 ± 2 °C 
for 3 days with food and water ad libitum before 
experiments. All experimental procedures 
conformed to the guidelines of National Institutes 
of Health Guide for The Care and Use of 
Laboratory Animals [12], and the study was 
approved by the Ethics Committee of The First 

People's Hospital of Wenling (approval no. 
20170046). 
 
Establishment of SCI model and treatment 
 
Rats were randomly assigned to sham operation 
(sham), SCI, and eriodictyol-treated (SCI + Eri, 
10, 20, and 50 mg/kg) groups. The SCI model 
was established using a spinal cord contusion 
injury [13]. Animals were anesthetized by 
intraperitoneal administration of 50 mg/kg sodium 
pentobarbital (Sigma, St. Louis, MO, USA). 
Moderate contusion injury was induced with a 
laminectomy of the eighth thoracic vertebra (T8). 
The T8 spinous process and laminae were 
excised to expose circular dura with a diameter 
of 2.4 mm, and a 2 g weight was dropped from a 
height of 5 cm onto the exposed dura. After 
injury, the overlying muscles and skin were sewn 
closed. Laminectomy without compression was 
performed in the sham operation group.  
 
Rats were administered 10, 20, or 50 mg/kg of 
eriodictyol (Seebio Biotech Co. Ltd., Shanghai, 
China) daily for 4 weeks. The sham group was 
treated with saline. On day 28, the rats were 
anesthetized and sacrificed.  
 
Evaluation of locomotor function recovery 
and behavioral pain tests 
 
Basso, Beattie, and Bresnahan (BBB) scores 
were assigned as a measure of locomotor 
recovery. The locomotor rating scale was 0 - 21, 
where a score of “0” indicated no visible hind 
limb movement and a score of “21” indicated 
normal movement. 
 
Paw withdrawal threshold (PWT) was measured 
to assess mechanical allodynia. Paw withdrawal 
latency (PWL) was determined using the 
Hargreaves method of responding to radiant 
heat. The PWT and PWL assessments were 
performed as previously reported [14]. 
 
Assessment of spinal cord water content 
 
At 72 h post-injury, the spinal cord was obtained 
from the epicenter for water content assessment. 
The wet weight of the spinal cord sample was 
measured, and dry weight was measured after 
48 h of drying at 80°C. Percentage of spinal cord 
water content was calculated by the following 
equation: (wet weight - dry weight) / wet weight  
100%. 
 
Determination of cytokine expression  
 
Peripheral blood was obtained after eriodictyol 
treatment and subjected to centrifugation at 
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10,000  g for 10 min at 4°C to obtain cell-free 
supernatants. The levels of TNF-α, IL-1β, and IL-
6 were determined using ELISA kits (Dakewe 
Biotech, Shenzhen, China) according to the 
manufacturer’s instructions. 
 
Reverse transcriptase quantitative 
polymerase chain reaction (RT-qPCR) 
 
Total RNA was extracted using Trizol reagent 
(Gibco BRL, Grand Island, NY, USA). PCR was 
conducted on an ABI 7500 Real-Time PCR 
System. The RT-qPCR primer pairs are shown in 
Table 1. The PCR was performed as follows: 95 
°C for 10 min, 90 °C for 15 s and 60 °C for 60 s 
for 40 cycles, 95 °C for 60 s. 
 
Determination of malondialdehyde (MDA), 
superoxide dismutase (SOD), glutathione 
(GSH), and glutathione peroxidase (GSH-PX) 
levels 
 
Peripheral blood was obtained after eriodictyol 
treatment and subjected to centrifugation at 
10,000  g for 10 min at 4 °C. The levels of MDA, 
SOD, GSH, and GSH-PX were determined using 
immunoassay kits (Dakewe Biotech). 
 
Western blot analysis 
 
Spinal cord samples (15 mg) were homogenized, 
and proteins were extracted on ice with lysis 
buffer (Thermo Scientific, Rockford, IL, USA). 
Cells were washed twice with cold PBS. After 
sonication and centrifugation, protein 
concentration in the supernatant was determined 
using the Bicinchoninic Acid Protein Assay Kit 
(Thermo). Equal amounts of total protein were 
separated by 10 % SDS-PAGE, and the 
separated proteins were transferred onto 
polyvinylidene difluoride membranes. Non-
specific binding sites were blocked in NaCl/Tris-T 
buffer containing 5 % non-fat milk for 1 h.  
 
Membranes were incubated overnight at 4 °C 
with primary antibodies, including monoclonal 
mouse anti-human antibodies against Nrf2, HO-
1, NF-κB, and phosphorylated NF-κB (p-NF-κB) 
(BD Biosciences Franklin Lakes, NJ, USA). The 
membranes were then incubated for 1 h at room 

temperature with anti-mouse IgG conjugated with 
horseradish peroxidase (BD Biosciences). 
Protein expression levels were determined using 
an enhanced chemiluminescence detection 
system (GE Healthcare, USA).  
 
Statistical analysis 
 
SPSS 17.0 (SPSS Inc, Chicago, IL, USA) was 
used for all statistical analyses. The experimental 
data were expressed as means ± SD. 
Comparisons among multiple groups were 
performed using ANOVA followed by Tukey’s 
multiple comparison test. The cutoff for statistical 
significance was p < 0.05. 
 
RESULTS 
 
Eriodictyol alleviated locomotor dysfunction 
in SCI rats 
 
Different concentrations of eriodictyol were 
administered after SCI induction in rats. 
Locomotor function recovery was evaluated 
using BBB scores. The SCI group exhibited 
significantly lower BBB scores than the sham 
group (p < 0.01), whereas eriodictyol treatment 
significantly elevated BBB scores compared to 
the untreated SCI group (p < 0.01) (Figure 1 A). 
In addition, SCI induction led to a decrease in 
PWT and PWL compared to the sham group (p < 
0.01), whereas eriodictyol treatment increased 
both measures relative to the untreated SCI 
group (p < 0.01) (Figure 1 B and C). The spinal 
cord water content of SCI rats was increased 
compared to the sham group (p < 0.01), whereas 
eriodictyol administration significantly decreased 
spinal cord water content compared to the 
untreated SCI group (p < 0.01) (Figure 1 D). 
 
Eriodictyol attenuates pro-inflammation 
cytokines in SCI rats 
 
Levels of TNF-α, IL-1β, and IL-6 were 
significantly up-regulated in SCI rats compared to 
the sham group (p < 0.01). However, eriodictyol 
administration significantly inhibited pro-
inflammatory cytokine up-regulation compared to 
the untreated SCI group (p < 0.01) (Figure 2). 

 
Table 1: Primer pairs used for RT-qPCR 
 
 Primer sequence 

IL-6 forward 5′-CCA GAA ACC GCT ATG AAG TTCC-3′ 
reverse 5′-TCA CCA GCA TCA GTC CCA AG-3′ 

TNF-α forward 5′-CTC CAG GCG GTG CCT ATGT-3′ 
reverse 5′-GAA GAG CGT GGT GGC CC-3′

IL-1β forward 5′-CAA CCA ACA AGT GAT ATT CTC CATG-3′ 
reverse 5′-GAT CCA CAC TCT CCA GCT GCA-3′ 
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Figure 1: Eriodictyol alleviates motor dysfunction in 
SCI rats. (A) BBB scores in sham, SCI, and 
eriodictyol-treated groups; (B) PWT assessments in 
sham, SCI, and eriodictyol-treated groups; (C) PWL 
measurements in sham, SCI, and eriodictyol-treated 
groups; (D), Assessments of spinal cord water 
contents in sham, SCI, and eriodictyol-treated groups. 
○, sham; □, SCI; △, SCI + Eri (10 mg/kg); ◇, SCI + Eri 
(20 mg/kg); ▽, SCI + Eri (50 mg/kg); **p < 0.01, 
compared to the sham group; ##p < 0.01, compared to 
the SCI group  
 

 
 
Figure 2: Eriodictyol attenuates pro-inflammatory 
cytokines in SCI rats. **p < 0.01, compared to the 
sham group; ##p < 0.01, compared to the SCI group 
 
Eriodictyol attenuates oxidative stress in SCI 
rats 
 
Induction of SCI led to increased MDA 
expression compared to the sham group (p < 
0.01), whereas eriodictyol treatment significantly 
decreased MDA expression compared to 
untreated SCI rats (p < 0.01) (Figure 3 A). In 
contrast, SCI rats exhibited a significant 
decrease in SOD, GSH, and GSH-PX levels 
compared to the sham group (p < 0.01), whereas 
eriodictyol treatment gradually up-regulated 
SOD, GSH, and GSH-PX compared to the 
untreated SCI group (p < 0.01) (Figure 3 B - D). 
 

 
 
Figure 3: Eriodictyol inhibits oxidative stress in SCI 
rats. (A) MDA content in sham, SCI, and eriodictyol-
treated groups; (B) SOD activity in sham, SCI, and 
eriodictyol-treated groups; (C) GSH activity in sham, 
SCI, and eriodictyol-treated groups; (D) GSH-PX 
activity in sham, SCI, and eriodictyol-treated groups; 
**p < 0.01, compared to the sham group; ##p < 0.01, 
compared to the SCI group 
 
Eriodictyol regulates Nrf2/HO-1 and NF-κB 
pathways 
 
Induction of SCI led to elevated Nrf2, HO-1, and 
p-NF-κB/NF-κB levels compared to the sham 
group (p < 0.01). Eriodictyol treatment (especially 
20 and 50 mg/kg) significantly increased levels of 
Nrf2 and HO-1 (p < 0.01) but reduced the level of 
p-NF-κB/NF-κB compared to the untreated SCI 
group (Figure 4). 
 

 
 
Figure 4: Eriodictyol regulates Nrf2/HO-1 and NF-κB 
signaling pathways in SCI rats. **P < 0.01, compared 
to the sham group; #p < 0.05 and ##p < 0.01, compared 
to the SCI group 
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DISCUSSION 
 
Permanent disability and decreased quality of life 
and life expectancy can result from SCI [15]. 
Compelling evidence has shown that functional 
impairments following SCI result not only from 
the initial mechanical damage of the tissue but 
also from the development of complex secondary 
events that cause further cell damage [13]. 
Understanding how complex secondary injuries 
occur will facilitate the development of effective 
therapeutic strategy for patients with SCI. 
Therefore, this study investigated the protective 
effect of eriodictyol on SCI and its underlying 
mechanism. In this study, eriodictyol treatment 
alleviated locomotor dysfunction and decreased 
spinal cord water content following SCI. 
Eriodictyol treatment after SCI also reduced the 
expression of pro-inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6, and attenuated 
oxidative stress by decreasing MDA and 
increasing SOD, GSH, and GSH-PX levels. 
Moreover, eriodictyol treatment after SCI 
increased the expression of Nrf2 and HO-1 and 
decreased p-NF-κB/NF-κB expression, indicating 
that eriodictyol may alleviate SCI via regulation of 
the Nrf2/HO-1 and NF-κB signaling pathways. 
 
Inflammatory responses after trauma are likely to 
mediate early secondary injuries following SCI 
[13,16]. It has been reported that levels of IL-1β, 
IL-6, and TNF-α are remarkably elevated 
following severe SCI, reaching their highest 
levels at 6 h post-injury [17]. In an SCI mice 
model, significant up-regulation of TNF-α, IL-1β, 
and IL-6 were observed, whereas curcumin 
administration markedly inhibited the 
inflammatory response [18]. Oxidative stress and 
TNF-α, IL-1β, and IL-6 levels increased following 
SCI [19]. It has been reported that activation of 
the canonical NF-κB pathway following SCI 
indicates activation of the inflammatory response 
and that transplantation of neural precursors 
attenuates inflammation by inhibiting the NF-κB 
pathway [20]. Chlorogenic acid exerts 
anti-inflammatory effects via inactivating the Toll-
like receptor-4/NF-κB and p38 pathways [21]. 
Consistent with these results, the present study 
demonstrated that SCI leads to increased levels 
of TNF-α, IL-1β, IL-6, and p-NF-κB/NF-κB 
relative to the sham group, whereas eriodictyol 
administration reduces TNF-α, IL-1β, IL-6, and p-
NF-κB/NF-κB levels relative to the untreated SCI 
group. These results indicate that eriodictyol 
inhibits SCI-induced pro-inflammatory cytokines 
by suppressing the NF-κB pathway. 
 
An earlier study showed that salvianolic acid A 
alleviates oxidative stress through activation of 
the Nrf2/HO-1 axis [22]. In a cisplatin-induced 

nephrotoxicity rat model, epigallocatechin-3-
gallate increases antioxidant and GSH activates 
via activating the Nrf2/HO-1 pathway and 
reduces the inflammatory response by inhibiting 
NF-κB [23]. In traumatic brain injury mice, protein 
levels of IL-1β, IL6, and NF-κB decrease, 
whereas allyl isothiocyanate administration 
increases Nrf2 expression, indicating that 
oxidative stress and inflammation are alleviated 
via activating the Nrf2/HO-1 pathway or 
suppressing NF-κB pathway [24].  
 
Tanshinone IIA treatment down-regulates MDA, 
elevates GSH levels, and attenuates oxidative 
stress via activating the DJ-1/Nrf2/HO-1 pathway 
[25]. Moreover, eriodictyol exerts a protective 
effect on endothelial cells by eliminating oxidative 
stress-induced cell death via regulation of 
extracellular signal-regulated kinase 
(ERK)/Nrf2/ARE-dependent HO-1 expression 
[26]. The present study found that eriodictyol 
treatment reduced MDA levels and increased 
SOD, GSH, and GSH-PX levels. Further, 
eriodictyol visibly increased Nrf2 and HO-1 
levels, indicating that eriodictyol inhibits oxidative 
stress following SCI via activating the Nrf2/HO-1 
pathway. 
 
The results of this study show that eriodictyol 
exerts a protective effect on SCI in rats via 
modulation of the NrF2/HO-1 and NF-κB 
signaling pathways. Further research into the 
clinical potential of this compound should be 
conducted. In addition, the mechanism by which 
eriodictyol attenuates SCI through regulating 
Nrf2/HO-1 and NF-κB signaling pathways 
warrants future investigation. 
 
CONCLUSION 
 
The findings of this study demonstrate that 
eriodictyol alleviates SCI in rats by regulating 
Nrf2/HO-1 and NF-κB signaling pathways. Thus, 
the results support the need further investigation 
of eriodictyol as a potential therapeutic strategy 
for patients with SCI. 
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