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Abstract 

Purpose: To investigate the effects of miR-34a on insulin resistance and glucose metabolism in type 2 
diabetes. 
Methods: Human hepatocarcinoma (HepG2) cells were incubated with palmitic acid (PA) for the 
establishment of a cell model of insulin resistance. Cell viability was assessed using 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), while insulin resistance was evaluated by 
glucose consumption. Expressions of miR-34a and glucose transporter 4 were determined using 
quantitative reverse transcription polymerase chain reaction (qRT-PCR), while western blotting was 
used to determine protein expressions of glucose transporter 4 and proteins involved in the downstream 
pathway. Glucose uptake was assessed by flow cytometry whereas the target gene of miR-34a was 
determined using a luciferase activity assay. 
Results: PA treatment induced a decrease in cell viability in HepG2 cells, and promoted glucose 
production and miR-34a expression. Silencing of miR-34a conferred insulin sensitivity on PA-treated 
HepG2 cells. Palmitic acid treatment also reduced insulin-induced NBDG [2-(N-(7-nitrobenz-2-oxa-1,3-
diazol-4-yl)amino)-2-deoxyglucose] uptake in HepG2 cells, while knockdown of miR-34a attenuated a 
PA-induced decrease of 2-NBDG uptake in insulin-induced HepG2 cells. Knockdown of miR-34a 
promoted mRNA and protein expression of glucose transporter 4 in PA and insulin-induced HepG2 
cells. MiRNA-34a directly bound to the 3´-UTR of insulin-like growth factor 2 (IGF2), and silencing of 
miR-34a attenuated the PA-induced decrease in IGF2 expression in HepG2 cells. Interference of miR-
34a attenuated IGF2 silencing of the induced decrease in IGF2, glucose transporter 4, and AKT 
phosphorylation in PA-treated HepG2 cells. 
Conclusion: Downregulation of miR-34a promotes glucose consumption and represses insulin 
resistance by upregulating IGF2 to activate AKT pathway, thus providing a potential target for the 
treatment of type 2 diabetes. 
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INTRODUCTION 
 
Type 2 diabetes mellitus is a major health 
problem worldwide, and the main pathogenic 
indicators of type 2 diabetes mellitus are obesity, 
genetic factors, or reduced glucose tolerance [1]. 
Insulin resistance associated with abnormal 
glucose metabolism is the key feature of type 2 
diabetes [2]. Amelioration of insulin resistance 
mediates glucose metabolism in the liver, thus 
mitigating type 2 diabetes [3]. 
 
MicroRNAs are involved in metabolic pathways, 
metabolic homeostasis, and organismal energy 
balance [4]. Through regulation of the insulin 
signaling pathway, miRNAs also play major roles 
in insulin resistance-associated type 2 diabetes 
[5]. MiR-34a regulates B-cell lymphopoiesis to 
protect against type 1 diabetes [6], and miR-34a 
is up-regulated in patients with type 2 diabetes 
through regulation of β-cell functionality and 
insulin resistance [7]. However, the role and 
mechanism of miR-34a regarding insulin 
resistance and glucose metabolism have not 
been reported. 
 
The insulin-like growth factor (IGF) axis, 
particularly the IGF1 and IGF2 genes, is a 
candidate for correcting deficiencies in 
immunoregulation and impaired β cell viability 
and function [8]. IGFs have been regarded as 
novel prognostic biomarkers to improve the 
clinical diagnosis of type 1 diabetes [9]. In 
patients with type 2 diabetes mellitus, IGF2 
levels were found to be up-regulated during 
liraglutide treatment through regulation of 
glucose metabolism [10]. MiR-34a has therefore 
been hypothesized to regulate insulin resistance 
and glucose metabolism through mediation of 
IGF2. In this study, the expression levels of miR-
34a in palmitic acid (PA)-induced human 
hepatocarcinoma (HepG2) cells were first 
determined, and the effects of miR-34a on insulin 
resistance and glucose metabolism in PA-treated 
HepG2 cells were also evaluated. The miR-34a 
pathway and identification of downstream target 
genes may provide a potential therapeutic 
strategy for management of type 2 diabetes. 
 
METHODS 
 
Cell culture, treatment, and transfection 
 
HepG2 cells (American Type Culture Collection, 
Manassas, VA, USA) were grown in DMEM 
(Gibco BRL, Gaithersburg, MD, USA) containing 
10% fetal bovine serum (Gibco BRL) in a 37°C 
incubator. Cultured HepG2 cells at 85% 
confluency were incubated with 0, 0.1, 0.25, 0.5, 
or 1 mM PA (Sigma-Aldrich, St. Louis, MO, USA) 

for 16 h. For cell transfection, HepG2 cells under 
0.5 mM PA treatment were transfected with 
siRNA targeting IGF2 (200 nM; RiboBio, 
Guangzhou, China), antagomiR-NC, or 
antagomiR-34a (100 nM; RiboBio), or co-
transfected with siIGF2 and antagomiR-34a with 
Lipofectamine 2000 (Thermo Fisher Scientific, 
Waltham, MA, USA). 
 
Cell viability 
 
HepG2 cells were plated on 96-well plates and 
incubated with 0, 0.1, 0.25, 0.5 or 1 mM PA 
(Sigma-Aldrich) for 16 h. Then, [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide] (MTT) solution (0.5 mg/mL, Sigma-
Aldrich) was added to each well, and incubated 
another 3 h. Lysis buffer (10% SDS in 0.01 M 
HCl) was added to each well to dissolve the 
formazan crystals, and the absorbance at 570 
nm was measured using a spectrophotometer 
(Thermo Fisher Scientific). 
 
Glucose production 
 
HepG2 cells in the presence of different 
concentrations of PA were cultured in 6-well 
plates for 16 h, and then washed with phosphate-
buffered saline (Sigma-Aldrich) before incubation 
in phenol red, glucose-free DMEM with 20 mM 
sodium lactate, and 2 mM sodium pyruvate for 5 
h. Insulin (100 nM, Sigma-Aldrich) was added to 
the wells at 4 h after treatment with glucose-free 
DMEM. The glucose content was determined 
using a glucose assay kit (BioVision, Milpitas, 
CA, USA). 
 
Glucose consumption 
 
HepG2 cells with or without antagomiR-NC or 
antagomiR-34a transfection were cultured in 96-
well plates for 24 h, and then exposed to DMEM 
containing 0.5 mM PA and 4.5 g/L glucose for 16 
h. The cells were then incubated with or without 
100 nM insulin for another 1 h before 
determination of glucose content in the cultured 
medium using an assay kit (BioVision). Glucose 
consumption was determined as the glucose 
concentration between blank wells and test wells. 
 
Glucose uptake 
 
HepG2 cells with or without antagomiR-NC or 
antagomiR-34a transfection were cultured in 12-
well plates and then exposed to DMEM medium 
containing 0.5 mM PA for 16 h. The medium was 
exchanged to glucose-free DMEM containing 
100 nM insulin, and the cells were cultured in the 
medium for 10 min before incubation with 60 mM 
2-NBDG (a fluorescent D-glucose analogue; 
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Sigma-Aldrich) for 1 h. The fluorescence was 
then determined using FACScalibur flow 
cytometry (Becton Dickinson, Franklin Lakes, NJ, 
USA). 
 
Dual luciferase reporter assay 
 
The 3´-untranslated (3ʹ-UTR) region of IGF2 that 
contains the predicted miR-34a binding site was 
cloned into the pmirGLO vector (Promega, 
Madison, WI, USA) and named pmirGLO-IGF2-
wt. The mutated sequence of the IGF2 3´-UTR 
region that no longer has the predicted miR-34a 
binding site was also cloned into the pmirGLO 
vector (Promega) and named pmirGLO-IGF2-
mut. The HepG2 cells were co-transfected with 
pmirGLO-IGF2-wt or pmirGLO-IGF2-mut and the 
NC mimic or miR-34a mimic using Lipofectamine 
2000. A dual luciferase reporter assay system 
(Promega) was used to determine the luciferase 
activity. 
 
Quantitative reverse transcription PCR (qRT-
PCR) 
 
Total RNAs or the miRNAs were isolated from 
treated cells using TRIzol (Thermo Fisher 
Scientific) or an miRcute miRNA isolation kit 
(Tiangen, Beijing, China), respectively. The 
RNAs were then reverse-transcribed into cDNAs 
using a reverse transcription reagent kit 
(TaKaRa, Dalian, China). The expressions of 
miR-34a, IGF2, and glucose transporter 4 were 
detected using SYBR Green Master (TaKaRa) 
with U6 or GAPDH as the endogenous controls. 
The primer sequences used are shown in Table 
1. 
 
Western blotting 
 
Proteins were extracted from treated cells using 
RIPA Lysis and Extraction Buffer (Thermo Fisher 
Scientific). Protein concentrations were 
determined using an acid protein kit (Thermo 
Fisher Scientific) and then separated using SDS-
PAGE. Following electroblotting onto 
polyvinylidene fluoride membranes (Millipore, 

Bedford, MA, USA) and blocking with 5% bovine 
serum albumin, the membranes were incubated 
overnight with the following primary antibodies: 
anti-IGF2 (1:2,000, Cell Signaling Technology, 
Beverly, MA, USA), anti-glucose transporter 4 
(1:2,500, Cell Signaling Technology), anti-AKT 
and anti-p-AKT (1:3,000, Cell Signaling 
Technology), and anti-β-actin (1:3,500, Cell 
Signaling Technology). Horseradish peroxidase-
labeled secondary antibody (1:5,000; Cell 
Signaling Technology) was used to treat the 
membranes as a secondary antibody, and 
enhanced chemiluminescence (KeyGen, Nanjin, 
China) was used to visualize the 
immunoreactivities of the bands in membranes. 
 
Statistical analysis 
 
Data are expressed as the mean ± standard 
error of the mean, and statistical analysis was 
conducted using one-way analysis of variance or 
Student’s t-test, using Prism software 
(GraphPad, San Diego, CA, USA). A value of p < 
0.05 was considered statistically significant. 
 
RESULTS 
 
Upregulation of miR-34a in PA-treated HepG2 
cells 
 
To establish a type 2 diabetes-like cellular model, 
HepG2 cells were incubated with PA. The MTT 
assay showed that PA treatment decreased the 
cell viability of HepG2 cells in a dose-dependent 
manner (Figure 1 A). Glucose production in 
HepG2 cells post-insulin treatment (100 nM) was 
reduced when compared to the control (Figure 1 
B). Insulin resistance was induced in HepG2 
through increased glucose production induced by 
PA treatment, even in the presence of 100 nM 
insulin (Figure 1 B). MiR-34a expression was up-
regulated in HepG2 cells post-PA induction in a 
dose-dependent manner (Figure 1C), suggesting 
that miR-34a might participate in the regulation of 
type 2 diabetes. 

 
Table 1: Primers used in PCR 

 
ID Sequence (5´- 3´) 
GAPDH F  TGCACCACCAACTGCTTAGC 
GAPDH R GGCATGGACTGTGGTCATGAG 
U6     F CTCGCTTCGGCAGCACA 
U6     R AACGCTTCACGAATTTGCGT 
IGF2   F GTGGGTGTGGTTAAGCTGCAA 
IGF2   R GTCCGAACAGACAAACTGAA 
glucose transporter 4   F ACATACCTGACAGGGCAAGG 
glucose transporter 4   R CGCCCTTAGTTGGTCAGAAG 
miR-34a   F CCCGTTGGCAGTGTCTTAGCT 
miR-34a   R GTGCAGGGTCCGAGGT 
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Figure 1: Up-regulation of miR-34a in palmitic acid 
(PA) treated human hepatocarcinoma (HepG2) cells. 
(A) PA treatment decreased the cell viability of HepG2 
cells in a dose-dependent manner. (B) PA treatment 
increased glucose production in HepG2 cells post 100 
nM insulin induction in a dose-dependent manner. (C) 
PA treatment increased expression of miR-34a in 
HepG2 cells in a dose-dependent manner. *P < 0.05; 
**p < 0.01; ***p < 0.001 
 
Knockdown of miR-34a conferred insulin 
sensitivity on PA-treated HepG2 cells 
 
To investigate the role of miR-34a in type 2 
diabetes, HepG2 cells were transfected with 
antagomiR-34a and then incubated with 0.5 mM 
PA. The PA-induced increase in miR-34a 
expression in HepG2 cells was down-regulated 
by antagomiR-34a (Figure 2 A). Palmitic acid 
induced insulin resistance in HepG2 cells by 
down-regulation of glucose consumption was 
induced by insulin treatment (Figure 2 B). 
Knockdown of miR-34a ameliorated insulin 
resistance in PA-treated HepG2 cells by up-
regulation of glucose consumption (Figure 2 B), 
showing that knockdown of miR-34a conferred 
insulin sensitivity in PA-treated HepG2 cells. 
 

 
 
Figure 2: Knockdown of miR-34a conferred insulin 
sensitivity in palmitic acid (PA) treated human 
hepatocarcinoma (HepG2) cells. (A) The PA-induced 
increase of miR-34a expression in HepG2 was down-
regulated by transfection with antagomiR-34a. (B) The 
PA-induced reduction in glucose consumption in 
HepG2 cells was induced by insulin, and knockdown 
of miR-34a decreased insulin resistance in PA-treated 
HepG2 cells through an increase in glucose 
consumption. #P < 0.05; ** vs &&p < 0.01 
 
Knockdown of miR-34a promoted glucose 
metabolism in PA-treated HepG2 cells 
 
To assess the role of miR-34a on glucose 
metabolism, glucose uptake using analysis of 2-
NBDG was determined by flow cytometry. PA 

treatment decreased 2-NBDG fluorescence in 
HepG2 cells under insulin induction (Figure 3A), 
while knockdown of miR-34a increased the 
fluorescence (Figure 3 A), indicating that 
knockdown of miR-34a induced glucose uptake 
in PA-treated HepG2 cells. Moreover, mRNA 
(Figure 3 B) and protein levels (Figure 3 C) of 
glucose transporter 4 were up-regulated by 
transfection with antagomiR-34a in HepG2 cells, 
with or without insulin treatment. 
 

 
 
Figure 3: Knockdown of miR-34a promoted glucose 
metabolism in palmitic acid (PA)-treated human 
hepatocarcinoma (HepG2) cells. (A) Insulin treatment 
increased 2-NBDG fluorescence in HepG2 cells, while 
PA treatment decreased fluorescence. Knockdown of 
miR-34a decreased the insulin-induced increase of 2-
NBDG fluorescence. (B) The mRNA of glucose 
transporter 4 was up-regulated by transfection with 
antagomiR-34a in PA-treated HepG2 cells with or 
without insulin treatment. (C) The protein level of 
glucose transporter 4 was up-regulated by transfection 
with antagomiR-34a in PA-treated HepG2, with or 
without insulin treatment. *#P < 0.05, **, && @@p < 0.01; 
@@@p < 0.001 
 
MiR-34a bound to IGF2 
 
IGF2 was predicted as a target gene of miR-34a 
(Figure 4 A). Transfection with the miR-34a 
mimic reduced the luciferase activity of pmirGLO-
IGF2-wt (Figure 4B), while it showed no 
significant effect on pmirGLO-IGF2-mut (Figure 4 
B). Palmitic acid treatment decreased mRNA 
(Figure 4 C) and protein (Figure 4D) expression 
of IGF2 in HepG2 cells, while knockdown of miR-
34a decreased the PA-induced decrease in IGF2 
(Figure 4 C and D), showing that miR-34a 
directly bound to IGF2 and negatively regulated 
the expression of IGF2 in HepG2 cells. 
 
Knockdown of miR-34a promoted activation 
of the AKT pathway by up-regulation of IGF2 
 
To identify the downstream pathway in miR-34a-
mediated insulin resistance and glucose 
metabolism, western blot analysis was 
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performed, which showed that PA treatment 
induced down-regulation of AKT phosphorylation 
in HepG2 cells (Figure 5), while knockdown 
promoted phosphorylation of AKT in PA-treated 
HepG2 cells (Figure 5). Silencing of IGF2 
decreased protein expressions of IGF2 and 
glucose transporter 4 and decreased AKT 
phosphorylation in PA-treated HepG2 cells 
(Figure 5). However, knockdown of miR-34a 
decreased IGF2 silencing-induced decreased 
IGF2, glucose transporter 4, and AKT 
phosphorylation in PA-treated HepG2 cells 
(Figure 5). Together, these results indicated that 
knockdown of miR-34a promoted activation of 
the AKT pathway by up-regulation of IGF2 in PA-
treated HepG2 cells. 
 
DISCUSSION 
 
MiRNAs modulate insulin secretion, insulin 
signaling pathways, glucose transport, and 
participate in the pathogenesis of insulin 
resistance, glucose metabolism, and type 2 
diabetes [5]. Therefore, miRNAs are regarded as 
promising diagnostic, prognostic, and therapeutic 
targets for the treatment of type 2 diabetes [6]. 
Because miR-34a has been shown to protect 
against type 1 diabetes [6] and was up-regulated 
in patients with type 2 diabetes [7], miR-34a 
might regulate insulin resistance and glucose 
metabolism. 
 

 
 
Figure 4: MiR-34a bound to IGF2. (A) The potential 
binding site between miR-34a and IGF2. (B) 
Transfection with the miR-34a mimic reduced the 
luciferase activity of pmirGLO-IGF2-wt, while it had no 
significant effect on pmirGLO-IGF2-mut. (C) Palmitic 
acid (PA) treatment decreased the mRNA expression 
of IGF2 in HepG2 cells, while knockdown of miR-34a 
decreased the PA-induced decrease of IGF2. (D) PA 
treatment decreased the protein expression of IGF2 in 
HepG2 cells, while knockdown of miR-34a decreased 
the PA-induced decrease of IGF2. &P < 0.05, ##, &&p < 
0.01, ***p < 0.001 
 

 
 
Figure 5: Knockdown of miR-34a promoted activation 
of the AKT pathway by up-regulation of IGF2. Palmitic 
acid (PA) treatment induced down-regulation of AKT 
phosphorylation in HepG2 cells, and silencing of IGF2 
decreased protein expression of IGF2 and glucose 
transporter 4 and AKT phosphorylation in PA-treated 
HepG2 cells. Knockdown of miR-34a attenuated IGF2 
silencing-induced decreases of IGF2, glucose 
transporter 4, and AKT phosphorylation in PA-treated 
HepG2 cells. *,&,#P < 0.05; **,&&,##,@@ p < 0.01; @@@p < 
0.001 
 
PA, a common saturated free fatty acid, is widely 
used to induce insulin resistance in HepG2 cells, 
which is regarded as a type 2 diabetes-like 
cellular model [11]. Suppression of glycogen 
synthesis and promotion of gluconeogenesis 
induced by PA reduces insulin-dependent 
glucose uptake [11]. The results of the present 
study showed that PA treatment induced 
decreased cell viability in HepG2 cells and 
increased glucose production in HepG2 cells 
post insulin induction. Moreover, insulin-induced 
up-regulation of glucose uptake was repressed 
by PA treatment, suggesting the successful 
establishment of type 2 diabetes-like cellular 
model. A previous study showed that miR-34a 
was up-regulated in patients with type 2 diabetes 
[7]. A significant up-regulation of miR-34a was 
confirmed in PA-treated HepG2 cells in this 
study. Antagonism of miR-34a attenuated 
ceramide accumulation-induced loss of insulin 
sensitivity by modulation of glucose transporter 4 
localization in aging skeletal muscle [12]. The 
results of the present study showed that 
knockdown of miR-34a conferred insulin 
sensitivity in PA-treated HepG2 cells and 
decreased glucose uptake by up-regulation of 
glucose transporter 4. Therefore, knockdown of 
miR-34a might ameliorate development of type 2 
diabetes through mitigation of insulin resistance 
and modulation of glucose metabolism. 
 
With the ability to regulate the mass and function 
of β-cells, IGF2 has been implicated in the 
pathogenesis of insulin resistance [13]. 
Moreover, IGF2 regulates bone growth by 
modulation of glucose metabolism in 
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chondrocytes [14]. Up-regulation of muscle 
glucose uptake driven by IGF2 has been shown 
to be related to the hypoglycemic effect in type 2 
diabetes [15]. The results of the present study 
showed that miR-34a bound to the 3´-UTR of 
IGF2, and knockdown of miR-34a decreased the 
PA-induced decrease of IGF2 in HepG2 cells. 
Therefore, miR-34a might regulate insulin 
resistance and glucose metabolism by targeting 
IGF2. However, the role of IGF2 in insulin 
resistance and glucose metabolism in PA-treated 
HepG2 needs to be further investigated. 
 
During normal insulin signaling, binding to insulin 
induces dimerization and autophosphorylation of 
insulin receptors, thus recruiting PI3K to trigger 
activation of AKT and glucose transporter 4 
translocation, which increases glucose 
metabolism [17]. However, ceramides, the 
lipotoxic metabolites of free fatty acid-impaired 
insulin signaling, suppress the activation of AKT 
[17], and activation of PI3K/AKT alleviates insulin 
resistance [17]. Moreover, knockdown of miR-
34a alleviates ceramide accumulation in aging 
skeletal muscle [12]. The results of the present 
study indicated that knockdown of miR-34a 
attenuated PA-induced decreases in glucose 
transporter 4 and p-AKT in HepG2 cells, 
suggesting that down-regulation of miR-34a 
repressed insulin resistance and mediated 
glucose metabolism by activation of the 
PI3K/AKT signaling pathway. Moreover, IGF2 
has been shown to promote phosphorylation of 
AKT [18]. Silencing of IGF2 in the present study 
aggravated the PA-induced decrease of glucose 
transporter 4 and p-AKT in HepG2 cells, and 
knockdown of miR-34a attenuated IGF2 
silencing-induced decreases of glucose 
transporter 4 and p-AKT in PA-treated HepG2 
cells, suggesting that miR-34a might participate 
in the progression of type 2 diabetes through 
regulation of the IGF2/AKT pathway. 
 
CONCLUSION 
 
The findings of this study demonstrate the 
protective effect of miR-34a silencing in a PA-
treated HepG2 cell model. The results could 
identify a target for the treatment of type 2 
diabetes. However, the in vivo role of miR-34a 
during insulin resistance and glucose metabolism 
in diabetic mice needs to be further investigated. 
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