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Abstract 

Purpose: To investigate spleen deficiency and excess dampness syndrome (SDES) in primary liver 
cancer (PLC) and the underlying mechanism using ultra pressure liquid chromatography-mass 
spectrometry (UPLC-MS).  
Methods: Ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was 
used to detect urine metabolites from untreated and IPED-treatment PLC-SDES patients. The 
metabolites were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Human 
Metabolome Database (HMDB), and Lipidmaps. Principle component analysis (PCA) and partial least 
squares to latent structure-discriminant analysis (PLS-DA) models were built to reveal the metabolic 
differences between untreated, IPED-treated patients and healthy controls. The differential metabolites 
in PLC-SDES patients were screened according to variables important in the project (VIP) and p-value. 
Results: In urine, 537 metabolites (256 in negative and 281 in positive mode) were considered 
differential in PLC-SDES patients when compared to healthy controls. In untreated patients, 100 
metabolites (38 in negative and 62 in positive mode) were differential when compared to IPED-
treatment patients. The urine of PLC-SDES patients showed overlap of 32 metabolites. 
Conclusion: The results reveal comprehensive urine metabonomic changes in PLC-SDES patients, 
relative to healthy controls and IPED-treated patients. The identified metabolites may be potential 
biomarkers for diagnosis and IPED therapy. 
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INTRODUCTION 
 
Primary liver cancer (PLC) is one of the most 
malignant carcinomas in the world, and its 
occurrence is strongly associated with eating 
habits and lifestyles [1]. The mortality of liver 

cancer is about 8.2 %, second to that of lung and 
colorectal cancer [2]. China has the highest liver 
cancer incidence worldwide and accounts for 
over 50 % of all newly diagnosed patients and 
deaths [3]. Populations in the underdeveloped 
western area of China in particular have the 
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highest incidence and mortality [4]. Xinjiang, 
located on the western border of China, shows a 
huge difference in day and night temperatures 
and has experienced water shortages for years. 
The theory of traditional Chinese medicine (TCM) 
holds that this lifestyle is often damaging to the 
spleen and stomach and supports the 
endogenesis of dampness syndrome. A survey 
conducted in 2003 showed that the frequency of 
“spleen deficiency and excess-dampness 
syndrome” (SDES) was about 79.07 % among 
patients with clinically diagnosed liver cancer in 
China [5]. In TCM theory, spleen deficiency will 
cause a stagnation of dampness, and the 
dampness will further aggravate spleen 
deficiency. The frequency of SDES occurrence in 
stage II and III liver cancer is often quite high [6]. 
The TCM treatment “invigorating spleen and 
eliminating dampness” (IPED) is regarded as an 
effective therapy for SDES [7]. However, the 
biological mechanisms of IPED treatment on 
SDES in liver cancer are still unclear. 
 
Metabonomics is a vital part of systematic 
biology which focuses on dynamic changes in 
biological components [8]. The experimental 
methods used in metabonomics include nuclear 
magnetic resonance (NMR), gas 
chromatography-mass spectrometry (GC-MS), 
and liquid chromatography-mass spectrometry 
(LC-MS) [9]. Ultra-performance liquid 
chromatography coupled with mass spectrometry 
(UPLC-MS) is a powerful technique for 
metabonomic studies, because it allows 
metabolites to be tested in liquids such as urine 
[10]. Typically, urine contains a diverse range of 
polar metabolites, and LC-MS-based methods 
can rapidly detect these components in urine 
samples. Chen reported that hydrophilic 
interaction chromatography can detect 
metabolites in urine more efficiently than reverse-
phase liquid chromatography [11]. In the present 
study, untargeted ultra-performance liquid 
chromatography combined with mass 
spectrometry (UPLC-MS) was used to study the 
effects of IPED on urine metabolites in patients 
with SDES-PLC. Principle component analysis 
(PCA) and partial least squares to latent 
structure-discriminant analysis (PLS-DA) were 
used to identify significant metabolites 
associated with IPED. 
 
EXPERIMENTAL 
 
Patients 
 
Fifty-five patients with SDE hepatocellular 
carcinoma were randomly recruited from the 
Affiliated Hospital of Traditional Chinese 
Medicine of Xinjiang Medical University. Among 

them, twenty-four patients who had received 
IPED treatment served as the IPED treatment 
group, and the remaining thirty-one untreated 
patients served as the untreated group. All 
patients were diagnosed with PLC according to 
the western medicine diagnosis standard, and 
with SDES according to the traditional Chinese 
medicine diagnosis, and all were diagnosed with 
PLC as the first diagnosis. In addition, twenty-
eight healthy persons were recruited as a healthy 
control group from the physical examination 
center of Affiliated Hospital of Chinese medicine 
of Xinjiang Medical University. Each patient and 
healthy volunteer provided written consent for 
participation in this study. 
 
Sample collection and preparation 
 
A 5 mL volume of morning urine was collected 
from each patient and healthy control and stored 
in Eppendorf (EP) tube at room temperature after 
adding 500 μL sodium azide (1 mmol/L). The 
urine samples were cooled on ice and then 
centrifuged at 5440 g for 10 min at 20 ℃. The 
solid impurities were discarded, and a 2 mL of 
the urine supernatant was kept in an EP tube. A 
100 μL sample of urine supernatant was 
transferred to a new EP tube, and 400 μL pure 
methanol was added to precipitate proteins. The 
EP tubes were vortexed, placed on an ice bath 
for 5 min, and then centrifuged at 25000 g for 10 
min at 4 ℃. The supernatant was diluted using 
60 % methanol with MS grade water, and filtered 
through a 0.22 μM filter membrane using a 10 
min centrifugation at 15000 g at 4 ℃. The filtrate 
was collected and analyzed using LC-MS. Blank 
control samples were generated using 60% 
methanol containing 0.1 % formic acid. 
 
QC sample preparation 
 
Equal volumes of urine samples from each group 
were mixed to generate a quality control (QC) 
sample. The mixed QC sample was treated using 
the same preparation method described for the 
test samples. The pooled QC sample was used 
to validate the study method. 
 
UPLC-MS analysis 
 
UPLC-MS data was analyzed using a Vanquish 
UHPLC system (Thermo Fisher) coupled to an 
Orbitrap Q Exactive HF-X mass spectrometer 
(Thermo Fisher) operating in the data-dependent 
acquisition (DDA) mode. Samples were injected 
onto an Accucore HILIC column (100 × 2.1 mm, 
2.6 μm) using a 16-min linear gradient at a flow 
rate of 0.2 mL/min. The mass spectrometer was 
operated in positive/negative polarity mode with 
a spray voltage of 3.2 kV, capillary temperature 
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of 320 °C, sheath gas flow rate of 35 arb, and 
auxiliary gas flow rate of 10 arb. 
 
Metabonomic validation method  
 
The precision and repeatability of the 
experimental instruments were tested and 
monitored by analyzing 9 QC samples by UPLC-
MS/MS. Three QC samples were used to monitor 
instrument status and to balance the 
chromatograph-mass spectrum before the 
injection of test samples. Another 3 QC samples 
were analyzed to evaluate the systematic 
stability of the entire experimental procedure 
during the analysis of urine samples. The last 3 
QC samples were used for qualitative analysis of 
metabolites using secondary mass spectrometry. 
Pearson correlation coefficient analysis and 
principle components analysis (PCA) for the QC 
samples were performed using the peak area 
values. 
 
Metabolite identification and classification 
 
The raw data files generated by UHPLC-MS/MS 
were processed using Compound Discoverer 3.0 
(CD3.0, Thermo Fisher) to perform peak 
alignment, peak picking, and quantitation for 
each metabolite. The experimental conditions 
were set as follows: retention time tolerance, 0.2 
min; actual mass tolerance, 5 ppm; signal 
intensity tolerance, 30%; signal/noise ratio, 3; 
and minimum intensity, 100000. The peak 
intensities were normalized to the total spectral 
intensity, and the normalized data were used to 
predict the molecular formula based on additive 
ions, molecular ion peaks, and fragment ions. 
The peaks were then matched with the mzCloud 
(https://www.mzcloud.org/) and ChemSpider 
(http://www.chemspider.com/) databases to 
obtain accurate qualitative and relative 
quantitative results. Statistical analyses were 
performed using the statistical software R 
(version R-3.4.3), Python (version 2.7.6), and 
CentOS (CentOS release 6.6). When data were 
not normally distributed, normal transformations 
were attempted using the area normalization 
method. The classifications and pathway 
annotations of the identified metabolites were 
derived using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG), Human Metabolome 
Database (HMDB) and Lipidmaps databases [12-
14]. 
 
Discrimination model building and validating 
 
Differential metabolites were screened using 
principal component analysis (PCA), and partial 
least squares discriminant analysis (PLS-DA) 
models were established using metaX (a flexible 

and comprehensive software for processing 
metabolomics data) [15]. The established model 
was then assessed by Y-scrambling statistical 
validation to test the possibility of a chance 
correlation when the class membership was 
randomly shuffled 200 times, and the parameters 
for model fitness (R2) and predictive ability (Q2) 
were calculated [16]. The Q2 value was expected 
to be lower than R2, which would suggest that 
the models were not over-fitted. 
 
Differential metabolite screening 
 
The univariate analysis (t-test) was applied to 
calculate the statistical significance (P-value), 
and the variable importance in the project (VIP) 
values of metabolites were calculated from the 
established PLS-DA models. A larger VIP value 
indicates a more significant metabolite in model 
[17]. Metabolites with VIP > 1 and p < 0.05 and 
fold change (FC) ≥ 2 or FC ≤ 0.5 were 
considered differential metabolites. Volcano plots 
were used to demonstrate filtered metabolites of 
interest according to the Log2 (FC) and -log10 (P 
value) determined for the metabolites. 
 
Clustering and KEGG enrichment analysis 
 
For clustering heat maps, the metabonomic data 
were normalized using z-scores of the intensity 
areas of differential metabolites and were plotted 
with the Pheatmap package in the R language. 
The correlations between differential metabolites 
were analyzed using the cor() function in the R 
language (method = Pearson). Statistically 
significant correlations between differential 
metabolites were calculated with the cor.mtest() 
function in the R language. A p < 0.05 was 
considered statistically significant, and 
correlation plots were plotted with the corrplot 
package in the R language. 
 
Data analysis 
 
The functions of the differential metabolites and 
metabolic pathways were annotated using the 
KEGG database. The metabolic pathway 
enrichment of differential metabolites were 
determined. When the ratio satisfies the relation 
x/n > y/N, a metabolic pathway was considered 
enriched. The KEGG pathways with p < 0.05 
were considered as statistically significantly 
enriched. 
 
RESULTS 
 
Validated metabonomic method 
 
Metabolic components can undergo 
interferences and changes due to external 
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factors. Therefore, a QC procedure is necessary 
to validate the repeatability and precision of 
metabonomic results. Figure 1 shows the 
correlations between different QC samples, 
reflected by the R2 value. A larger R2 (ranging 
from 0 to 1) means a stronger correlation 
between two samples, as well as better data 
quality. In this study, the R2 in negative mode 
ranged from 0.98 to 1.00, while the R2 in positive 
mode ranged from 0.977 to 1.00. 
 
The principle components analysis (PCA) was 
performed using the peak calls of all tested and 
QC samples. The PCA result of all samples 
showed that the QC samples were gathered 
intently, confirming the stability of the 
metabonomic method based on UPLC-MS 
(Figure 1). 
 

 
 
Figure 1: Correlation plots of QC samples in negative 
mode (A), and in positive mode (B). PCA score plots 
of urine in 2D negative mode (C), in 3D negative mode 
(E), in 2D positive mode (D), and in 3D positive mode 
(F). In negative mode, PC1 represents 10.62 % 
variance, PC2 represents 9.39 % and PC3 represents 
6.12 %; in positive mode, PC1 represents 12.96 %, 
PC2 represents 9.29 % and PC3 represents 5.14 %. 
QC: quality control, zcz: group of healthy controls, 
zLH: group of IPED-treatment patients, zLQ: group of 
untreated patients 
 
Metabolite classification and annotation 
 
The metabolites identified from the urine 
metabonomic profile were classified and 
annotated using KEGG, HMDB, and Lipidmaps 

analysis (Figure 2). The most important 
categories of metabolites are listed in Table 1. 
The KEGG analysis for the negative mode 
identified the top three metabolic pathways, 
annotated by the largest number of metabolites, 
as “Global and overview maps,” “Amino acid 
metabolism,” and “Carbohydrate metabolism”; for 
the positive mode, these top pathways were 
“Global and overview maps,” “Amino acid 
metabolism,” and “Metabolism of cofactors and 
vitamins.” The HMDB results for the negative 
mode indicated that the largest number of 
metabolites, at 151, belonged to “Lipids and lipid-
like molecules”; for the positive mode, the largest 
number of metabolites, at 186, belonged to 
“Organic acids and derivatives.” The Lipidmaps 
analysis revealed that the largest number of lipid 
metabolites belonged to flavonoids for both 
negative and positive modes. 
 

 
 
Figure 2: KEGG annotations of metabolites in 
negative mode (A) and in positive mode (B). HMDB 
annotations of metabolites in negative mode (C) and in 
positive mode (D). Lipidmaps annotations of 
metabolites in negative mode (E) and in positive mode 
(F). 
 
Establishment discrimination model and 
validation 
 
The spatial distribution and its two-dimensional 
projection of PCA analysis between the 
untreated PLC-SDES and the healthy control 
groups, and between the untreated and the 
IPED-treatment PLC-SDES group, are shown in 
Figure S1 and Figure S2, respectively. Figure S1 
shows the 95 % confidence intervals between 
the untreated group and healthy control group 
and indicates partially overlapped samples in the 
two-dimensional projection. 
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Table 1: Top three categories of metabonomic profile annotated by KEGG, HMDB and Lipidmaps 
 

Database Category Number of metabolites 
in negative

Number of metabolites 
in positive 

KEGG Global and overview maps 84 106 
Amino acid metabolism 35 48 
Metabolism of cofactors and vitamins 23 30 

HMDB Lipids and lipid-like molecules 151 138 
Organo-heterocyclic compounds 84 145 
Organic acids and derivatives 112 186 

Lipidmaps Flavonoids 40 34 
Fatty acids and Conjugates 34 13 
Fatty esters 6 15 

 
However, the 3D distribution plot shows 
differences in the metabolic components 
between the two groups, for metabolites 
analyzes in both the negative and positive 
modes. Figure S2 shows that the 95 % 
confidence intervals between the untreated and 
IPED-treatment groups were totally overlapped, 
suggesting a lesser significance of the 
metabonomic difference between these two 
groups than between the untreated and healthy 
control groups. 
 
The sample scores in the PLS-DA models plotted 
in Figure S3 show a good separation of the 
confidence intervals of three groups, suggesting 
that the PLS-DA models built for this study are 
effective for screening differential metabolites. 
The results of Y-scrambling validation tests for 
the PLS-DA models are shown in Figure S4. The 
model fitness (R2) was higher than the predictive 
ability (Q2) for all comparisons between groups. 
 
Differential metabolite screening 
 
Differential metabolites were screened according 
to the VIP values of the first principle component 
in the PLS-DA models and the fold changes 
combined with the P-values. The volcano plots in 
Figure 3 show the numbers and regulation 
directions of differential metabolites from each 
comparison between groups. Compared with 
healthy controls, 256 of the 2067 negative mode 
metabolites and 281 of the 2839 positive mode 
metabolites in the untreated patients were 
considered differential (See Table S1). 
Compared with IPED-treatment patients, 38 of 
the 2067 negative mode metabolites and 62 of 
the 2839 positive mode metabolites in the 
untreated patients were considered differential 
(See Table S2). An overlap was detected for 11 
negative mode and 21 positive mode differential 
metabolites between the two pairwise 
comparisons, while 27 negative mode and 41 
positive mode differential metabolites were 
unique in the discrimination of untreated and 
IPED-treatment patients. The overlapped 
differential metabolites and their regulation 

directions are shown in Table 2. Norethisterone 
acetate, which was up-regulated, had the highest 
VIP value among the unique differential 
metabolites in the comparison between the 
untreated and healthy control groups. 
Sulfosalicylic acid, which was also up-regulated, 
had the highest VIP in a comparison of the IPED-
treatment and untreated groups. 
 

 
 
Figure 3: Volcano plots of differential metabolites 
identified from comparison between untreated group 
and healthy control group in negative mode (A), and in 
positive mode (B). Volcano plots of differential 
metabolites identified from comparison between IPED-
treatment group and untreated group in negative mode 
(C), and in positive mode (D). Venn plots for pairwise 
comparisons of untreated patients vs healthy controls 
and untreated patients vs IPED-treatment patients in 
negative mode (E), and in positive mode (F). Note: 
The abscissa represents the log of fold change 
(log2foldchange) of metabolites, the ordinate 
represents the difference significance level (-log10(P-
value)). Each point in the volcanic map represents a 
metabolite; significantly up-regulated metabolites are 
colored in red, the significantly down-regulated 
metabolites are colored in green, and the size of the 
dot represents VIP value. zcz: group of healthy 
controls, zLH: group of IPED-treatment patients, zLQ: 
group of untreated patients, UP: up-regulated, DW: 
down regulated, NoDiff: no difference 
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Table 2: Overlapped differential metabolites identified in untreated patients vs healthy controls and vs IPED-
treatment patients 
 
Polarity Name MW VIP Up/Down
Negative (Z)-desulfoglucotropeolin 329.09  2.53  Down 
Negative Cefcapene 453.08  3.91  Up 
Negative MFCD24849356 299.11  1.89  Up 
Negative indole-3-propanol phosphate 255.07  1.55  Up 
Negative MFCD00210294 374.12  1.90  Down 
Negative epsilon-(gamma-Glutamyl)-lysine 275.15  3.60  Down 
Negative 2H-1,4-Benzoxazin-3(4H)-one 149.05  2.09  Down 
Negative Pyridoxine phosphate 249.04  3.60  Down 
Negative Narcotoline 399.13  3.79  Down 
Negative 2-(2-Amino-2-carboxyethyl)-5-oxotetrahydro-2-furancarboxylic acid 217.06  2.48  Down 
Negative Cycloxazoline 546.32  2.45  Up 
Positive Vernadigin 564.29  2.44  Up 
Positive Tenofovir 287.08  4.90  Up 
Positive QK4247000 307.10  2.39  Down 
Positive Cefpodoxime 427.06  3.17  Down 
Positive Rosmarinine 353.18  2.33  Down 
Positive (1S,6S)-6-Aminooctahydro-1-indolizinyl acetate 198.14  2.96  Up 
Positive Sulfurol 143.04  1.52  Up 
Positive 12,22-Dihydro-2H,3H-porphine 312.14  1.70  Up 
Positive Amylose 370.15  1.99  Down 
Positive Aloin B 418.13  3.05  Down 
Positive Roxatidine 306.19  6.39  Down 
Positive Tributyl citrate acetate 402.22  1.67  Up 
Positive Phenanthrene 178.08  1.99  Up 
Positive MFCD00059633 244.20  2.46  Up 
Positive 17(S)-HETE 320.23  2.35  Up 
Positive gitogenin 432.32  1.58  Up 
Positive Cefdinir 395.04  3.92  Down 
Positive 1,3-Di-tert-butylbenzene 190.17  2.05  Up 
Positive (-)-4'-Demethylepipodophyllotoxin 400.12  2.37  Down 
Positive 1,5-Diisocyanatonaphthalene 210.04  1.69  Up 
Positive Cyclopentolate 291.18  2.28  Down 
MW: molecular weight, VIP: variable importance in the project 
 
Clustering and KEGG enrichment analysis 
 
The clustering analysis unambiguously showed 
that the metabolic pattern of urine components in 
PLC-SDES patients differed from that of healthy 
controls (Figure 4). The details of tendencies in 
metabolic changes for each metabolite are 
shown in Figure S5. The significant KEGG 
pathways showing metabolite enrichment are 
plotted in Figure 5. The P-values identify the 
significantly enriched metabolic pathways in 
untreated patients vs. healthy controls as 
“Caffeine metabolism,” “beta-alanine 
metabolism,” “Tryptophan metabolism,” 
“Cholesterol metabolism,” “Cysteine and 
methionine metabolism,” “Biosynthesis of amino 
acids,” “Tyrosine metabolism,” “Starch and 
sucrose metabolism,” and “Porphyrin and 
chlorophyll metabolism.” “Caffeine metabolism” 
and “beta-Alanine metabolism” were the only two 
pathways that showed simultaneous involvement 
of metabolites in both the negative and positive 
modes. The significant pathway enriched with 
differential metabolites between the untreated 

patients and IPED-treatment patients was “Taste 
transduction” (Table 3). 
 

 
 
Figure 4: Heatmap for metabolite clustering in 
negative mode (A), in positive mode (B). Each grid in 
the heatmap denotes a up-regulated (red color) or 
down-regulated (blue color) metabolite. The left 
vertical axis represents the metabolite clusters while 
the horizontal axis represents group names. zcz: 
group of healthy controls, zLH: group of IPED-
treatment patients, zLQ: group of untreated patients 
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Figure 5: KEGG enrichment dot plots for differential 
metabolites from untreated patients vs healthy controls 
in negative mode (A), in positive mode (B), and from 
untreated patients vs IPED-treatment patients in 
negative mode (C), in positive mode (D). Note: Each 
dot denotes a KEGG pathway, of which the size 
denotes number of enriched metabolites. zcz: group of 
healthy controls, zLH: group of IPED-treatment 
patients, zLQ: group of untreated patients 
 

DISCUSSION 
 
Metabonomics studies are increasingly improving 
research into the pathenogenesis of various 
diseases by identifying and summarizing internal 
rules for metabolic component changes in 
organisms [18]. The syndrome theory used in 
TCM has a similar aim, namely to reveal the 
correlations between abnormalities of metabolic 
networks and factors like diet, sleeping, season 
changes, and life circumstances [19]. However, 
the syndrome traits of TCM only reflect the 
nature of disease development in a certain 
period. Thus, the results suffer from timeliness 
and fuzziness. In addition, due to the limited 

levels of knowledge and clinical experience, each 
TCM clinician has a different understanding 
about the same patient and makes different 
judgments of syndrome types. Thus, in the 
present study, common metabonomic methods, 
including UPLC-MS coupled with PCA analysis 
and the use of PLS-DA models, were used to 
improve the understanding of spleen deficiency 
and excess-dampness syndrome in primary liver 
cancer patients. The results of PCA and PLS-DA 
models, based on the UPLC-MS data shown in 
Figure S1, S2, and S3, indicated that the PLC-
SDES patients were well separated from the 
healthy controls. This finding suggests that the 
use of UPLC-MS to detect urine metabolic 
component changes can help in clinical 
diagnosis for further validation of SDES. 
 
In the present study, the metabolites in urine of a 
Xinjiang population were annotated and 
classified using the KEGG, HMDB, and 
Lipidmaps databases. The KEGG pathway 
indicated a strong enrichment of several 
metabolism-related pathways. The HMDB 
annotation showed that most metabolites that 
changed frequently in urine were organic acids 
and their derivatives, lipids and lipid-like 
molecules, and organoheterocyclic compounds. 
The Lipidmaps results suggested that flavonoids 
were the most enriched urine metabolic 
compounds. 
 
Flavonoids cannot be absorbed by the human 
body due to the presence of glycosides [20]. In 
addition, the results showed that the urinary 
excretion of flavonoid metabolites was higher in 
Xinjiang population. Dietary flavonoids are 
metabolized by both primary and secondary 
metabolism. The flavonoids in blood are 
transported to the liver through the portal veins, 
followed by excretion via the urinary system [21]. 

 
Table 3: Significant KEGG pathways enriched by differential metabolites in untreated patients vs healthy controls 
and in untreated patients vs IPED-treatment patients 
 
Group Map Title P-value Polarity
Untreated vs healthy controls Caffeine metabolism 0.082 Negative and positive 
Untreated vs healthy controls beta-Alanine metabolism 0.082 Negative and positive 
Untreated vs healthy controls Tryptophan metabolism 0.045 Negative only 
Untreated vs healthy controls Cholesterol metabolism 0.045 Negative only 

Untreated vs healthy controls 
Cysteine and methionine 
metabolism

0.033 Positive only 

Untreated vs healthy controls Biosynthesis of amino acids 0.033 Positive only 
Untreated vs healthy controls Tyrosine metabolism 0.048 Positive only 
Untreated vs healthy controls Starch and sucrose metabolism 0.048 Positive only 

Untreated vs healthy controls 
Porphyrin and chlorophyll 
metabolism

0.048 Positive only 

Untreated vs IPED-treatment Taste transduction 0.013 Negative only 
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Enzymes of secondary metabolism may catalyze 
the modification of flavonoids with glucuronide, 
sulfate and methyl moieties, resulting in the 
accumulation of flavonoids in the liver [22]. Thus, 
an extremely high content of flavonoids may 
increase the metabolic burden of the liver. Thus, 
patients should be advised to decrease their 
intake of dietary flavonoids. 
 
Many metabolites in the urine of PLC-SDES 
patients showed abnormal expression according 
to the VIP values and fold changes. The criteria 
of VIP > 1, |log2(FC)| > 2, and P-value < 0.05 
were used to compare the differential metabolites 
in untreated patients with those in healthy people 
or in IPED-treatment patients. The finding of 
norethisterone acetate, a synthetic derivative of 
progestogen commonly used in therapy for 
contraception and ovulation inhibition, and 
sulfosalicylic acid, a derivative of salicylic acid 
that acts as a chelating agent for iron ions [23], 
suggests that patients with PLC-SDES may have 
a risk of exposure to drug residues, since neither 
of these two compounds can be synthesized by 
the human body.  
 
The further identification of 32 overlapped 
differential metabolites (21 positive and 11 
negative mode) reveals their potential for use as 
biomarkers for diagnosis of PLC-SDES and for 
IPED treatment because they showed stable 
differences in patients before and after IPED 
treatment.  
 
These differential metabolites indicated 
significant effects on several metabolic pathways 
related to chemical molecules including caffeine, 
β-alanine, and tyrosine, in PLC-SDES patients. 
The primary metabolites of caffeine, which 
include paraxanthine, theobromine, and 
theophylline, are biologically active and are 
metabolized in the liver. Damage to the caffeine 
metabolic pathway to varying degrees has been 
reported in patients with liver diseases such as 
cirrhosis and hepatitis B or C [24]. β-Alanine is 
spontaneously produced by the liver and serves 
an important component of vitamin B5 and 
carnosine.  
 
Tyrosine is related to signaling pathways which 
may play a vital role in liver oncogenesis. For 
example, the PI3K/AKT signaling pathway, which 
uses a tyrosine kinase receptor as a factor for 
cascade amplification, is impaired in 
hepatocellular carcinoma [25]. Generally, 
metabolic disorders involving alkaloids and 
amino acids occur in PLC-SDES patients. After 
IPED treatment, the number of differential 
metabolites decreased, indicating a reduction in 
the extent of the disorder. 

CONCLUSION 
 
This is the first study to reveal systematic 
changes in urine metabonomic components in 
primary liver cancer patients with SDES. 
Qualitative and quantitative methods based on 
UPLC-MS were confirmed effective and 
sufficiently stable for the detection of urine 
metabolites in patients. Multivariate analysis, 
including PCA and PLS-DA, were able to 
discriminate PLC-SDES patients from healthy 
controls. In all, 537 metabolites in urine were 
identified as significantly different between PLC-
SDES patients and healthy controls. After 
treatment with IPED, the number of differential 
metabolites decreased to 100. The VIP value, 
fold change, and P-value revealed 21 differential 
metabolites that could serve as potential 
biomarkers for PLC-SDES diagnosis and 
indicators for IPED treatment in a Xinjiang 
population. 
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