Tropical Journal of Pharmaceutical Research April 2022; 21 (4): 769-777 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria.

> Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v21i4.13

Original Research Article

Psiadia punctulata (DC.) Vatke induces cell apoptosis in highly metastatic MDA-MB-231 cells

Nael Abutaha^{*1}, Ahmed Almalki², Fahd AL- Mekhlafi^{1,3}, Lamya Ahmed Al-Keridis⁴, Rania Ali El Hadi Mohamed^{4,5}, Muhammad A Wadaan¹

¹Bioproducts Research Chair Department of Zoology, College of Science, King Saud University, ²National Center for Environmental Technology (NCET), Life Sciences and Environment Research Institute (LSER), King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia, ³Department of Agricultural Production, College of Agriculture and Veterinary Medicine, Thamar University, Yemen, ⁴Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, ⁵Scientific researcher and research coordinator, Federal Ministry of Health, Sudan

*For correspondence: Email: nabutaha@ksu.edu.sa

Sent for review: 4 July 2021

Revised accepted: 28 March 2022

Abstract

Purpose: This study assessed the in vitro cell migration inhibitory and cell apoptotic effects of P. punctulata stem (PPS (and leaf hexane) PPL (extracts on breast cancer cell lines (MDA-MB-231 and MCF-7 cells).

Methods: Cytotoxicity was quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LD) release test after 48 h exposure of MDA-MB-231 cells to 0 – 200 μ g/mL of PPS and PPL hexane extract. Cell apoptosis was determined using MuseTM cell cytometry, while the phytoconstituents of PPS and PPL hexane extracts were identified by gas chromatography–mass spectrometry.

Results: The half-maximal inhibitory concentration (IC₅₀) for PPS and PPL hexane extracts against MDA-MB-231 cells was 44.33 and 52.16 µg/mL, respectively. T, whereas the IC₅₀ of PPS and PPL hexane extracts was 102.22 and 59.53 µg/mL against MCF-7 cells, sequentially. Treatment with 100 and 200 µg/mL of PPS and PPL hexane extract increased late apoptosis in MDA-MB-231 cells to 16.005 ± 1.155 and 52.58 ± 3.02 %, respectively, for PPS hexane extract and 77.34 ± 0 % and 95.21 ± 1.61 %, respectively, for PPL hexane extract, when compared to control cells (3.81% ± 0.79%). PPL hexane extract decreased cell migration and filled ~15.5 % of the wound gap on MDA-MB-231 cells after 24 h, while PPS hexane extract decreased cell migration by ~35 and ~42.5 % at 24 and 48 h, respectively. PPS and PPL hexane extracts contained several phytocompounds. Stem and leaf extracts of P. punctulata showed significant (p < 0.05) cell apoptotic and migration inhibition activities.

Conclusion: The extracts P. punctulata exhibit potent cytotoxic activity against the tested breast cancer cells. Further research is required to assess the acute and subacute toxicity of the extracts.

Keywords: Psiadia punctulata, Apoptosis, Cell migration, Caspase-3/7

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts

INTRODUCTION

Breast cancer (BC) is the prevalent tumor malignancy in women globally. Despite the

different treatments available for BC, it causes the highest number of cancer-related deaths among women. In 2018, an estimated 627,000 women died due to BC [1]. Worldwide, around 80% of people use plantderived products to treat several diseases [2], including cancer, due to safety, low cost, availability and multitargeting ability. In addition, 60% of currently approved anticancer drugs (vincristine, vinblastine, etoposide, paclitaxel, camptothecin, topotecan, aplidine, dolastatin, dactinomycin, bleomycin and doxorubicin) are derived from natural sources, such as microorganisms and plants [3].

Psiadia punctulata (DC) Vatke (family Asteraceae) is a shrub found in Africa and Asia [4], including Saudi Arabia. The plant is traditionally used to treat abdominal pain, cold, rheumatoid arthritis, fever, malaria, skin infection and scabies, and is also used as an analgesic expectorant and [4,5]. The plant has antimicrobial, anti-trypanosomal, antileishmanial, anti-plasmodial and cytotoxic activities [4,6]. Phytochemical analysis of P. punctulata has showed the presence of several biologically active compounds, such as flavonoids. coumarins. phenylpropanoids, diterpenes and terpenoids [4,6].

This study assessed the antiproliferative ability of stem and leaf hexane extracts of *P. punctulata* (PPS and PPL hexane extracts) grown wild in Saudi Arabia against two BC cell lines (MDA-MB-231 and MCF-7). We assessed the in vitro cell migration inhibitory and cell apoptotic effects of PPS and PPL Hex on MCF-7 and MDA-MB-231 cells.

EXPERIMENTAL

Plant collection and identification

P. punctulata was collected from AI suda (the Asir region; 18°19'09.3"N, 42°20'27.9"E) in south of Saudi Arabia between October and November 2019. A herbarium voucher specimen (no. KSU/BRC-050) was deposited for reference purposes at the Bioproducts Research Chair, Riyadh, Saudi Arabia

Phytochemical extraction

The *P. punctulata* leaves (PPL) and stems (PPS) were detached from the plants, washed several times with distilled water, and air-dried at 25°C. Subsequently, 50 g of dry leaves and stems were separately ground and extracted with 500 mL of solvent (hexane, chloroform, ethyl acetate and methanol) using Soxhlet apparatus for 24 h. Thereafter, the solvent was rotary evaporated (Heidolph, Germany) and transferred to a pre-weighed flask. The same process was repeated sequentially with three other solvents: chloroform

(CHCL₃), ethyl acetate (EtoAC) and methanol (MeOH).

Cell culture

MDA-MB-231 and MCF-7 cells were seeded in Dulbecco's modified Eagle's medium (DMEM). All media were complemented with foetal bovine serum (10 %) (Invitrogen, USA) and 1 % antibiotics (Gibco, USA) at 37 °C in a CO_2 incubator.

Cell viability assay

Cvtotoxicity was assessed using 3-(4.5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. MDA-MB-231 and MCF-7 cells were separately grown in 24well plates at 5×10^5 cells/well and then incubated for 48 h with different dilutions of P. punctulata stem and leaf extracts in triplicate (concentration range = $10 - 200 \,\mu g/mL$). Next, the cells were incubated for 2 h with 10 % MTT at 37 °C. Finally, the absorbance of the converted dye was recorded using a multi-well (Thermo plate Fisher reader Scientific. Multiskan, China) with a 540 nm filter, and the data collected were used to calculate the medial lethal concentration (LC₅₀) using OriginPro Corporation, version 8.5 (OriginLab Northampton, USA).

Lactate dehydrogenase release assay

The cytotoxic effect of PPS and PPL hexane extracts on the cell membrane integrity was analysed by detecting lactate dehydrogenase (LDH) release to the extracellular medium. Briefly, MCF-7 and MDA-MB-231 cells were seeded and treated (LC₅₀), as described earlier. LDH cytotoxicity assay was performed according to the kit manufacturer's instructions. Absorbance at 490 nm was measured using a multiwell plate reader (Thermo Fisher Scientific). Finally, cytotoxicity was expressed absorbance (A) values. The LDH release assay was performed in triplicate.

Cell morphology

MDA-MB-231 and MCF-7 cells were incubated in LC_{50} of PPS and PPL hexane extracts for 48 h and their morphology was observed.

Wound-healing assay

MDA-MB-231 cells were grown in a 24-well plate until they reached 90% confluence and then wounded using a pipette tip (P-10) to create a physical gap. Thereafter, they were treated with a noncytotoxic concentration (one-fourth of the half-maximal inhibitory concentration $[IC_{50}]$) of PPS and PPL hexane extracts for 24 and 48 h. Images of cells migrating into denuded areas were taken using a Leica microscope (Leica Camera, Germany) on each day of treatment (0, 24 and 48 h). Finally, the images were analysed using Image J software (National Institutes of Health, Bethesda, MA, USA). The wound-healing assay was performed in triplicate.

Cell apoptosis

MDA-MB-231 cells were treated for 48 h with 100 and 200 µg/mL of PPS and PPL hexane extracts and 0.01% dimethyl sulfoxide (DMSO) as a control. Next, the cells were stained with Muse[™] annexin V and dead cell reagent to assess the percentage of apoptotic cells, as previously described [7]. Lastly, cell analysis was performed using a Muse[™] flow cytometry analyser (Millipore, Burlington, MA, USA).

Caspase-3/7 activity assay

MDA-MB-231 cells were treated with PPS and PPL hexane extracts and then further incubated with CellEventTM caspase-3/7 green detection reagent (5 μ M). Following the treatment, the cells were photographed using a fluorescence microscope.

Gas chromatography–mass spectrometry (GC-MS)

PPS and PPL hexane extracts were analysed for phytocompounds using **GC-MS** (PerkinElmer, MA, USA) and identified, as previously described [7].

Statistical analysis

The data were analysed using OriginPro 8.5, and are presented as mean \pm standard deviation (SD). Statistical comparisons between the control, and extract-treated groups were by Student's two-tailed t-test. *P* < 0.05 was considered statistically significant.

RESULTS

Extract yield

The plant powders prepared from *P. punctulata* leaves and stems were extracted using four different solvents (hexane, CHCl₃, EtoAC and MeOH), and their yields are shown in Table 1. MeOH produced the highest yield, while EtoAC provided the lowest yield of PPS and PPL

hexane extracts. All extracts were sticky and medium to dark green in colour.

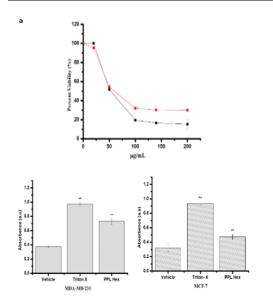
Effect of extracts on cell viability

In cytotoxicity assay, the highest cytotoxic activity was reported for PPS hexane extract (IC₅₀ = 44.33 µg/mL) and PPL hexane extract (IC₅₀ = 52.16 µg/ml), followed by *P. punctulata* leaf chloroform extract (IC₅₀ = 68.11 µg/mL) against MDA-MB-231 cells. The IC₅₀ of PPS and PPL hexane extracts was 102.22 and 59.53 µg/mL, respectively against MCF-7 cells. LDH release assay showed a significant ($p \le 0.05$) release of LDH after 48 h treatment at IC₅₀ of PPS and PPL hexane extracts. Therefore, PPS and PPL hexane extracts were selected for subsequent assays (Figure 1 and Figure 2).

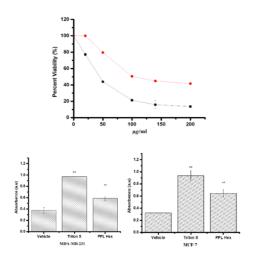
Cell morphology

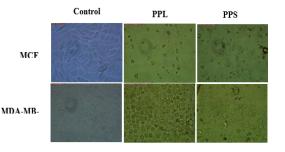
Compared to control cells, most of the treated MDA-MB-231 and MCF-7 cells changed from spindle shaped to round shaped. In addition, they detached, shrunk, blebbed and formed apoptotic bodies (Figure <u>3</u>). These morphological alterations are characteristics of apoptosis.

Cell migration


Control cells closed ~36.5 % of the wound after 24 h and ~55 % after 48 h. Compared to control cells, PPL hexane extract treatment (one-fourth of the IC₅₀) decreased cell migration time-dependently and filled ~15.5 and ~24 % of the wound gap in MDA-MB-231 cells after 24 and 48 h, respectively (Figure 4), while PPS hexane extract treatment (one-fourth of the IC₅₀) decreased cell migration by ~35 and ~42.5 % at 24 and 48 h, respectively (Figure 5).

Cell apoptosis


PPL hexane extract was cytotoxic to MDA-MB-231 cells (Figure 6 a and b), and treatment of MDA-MB-231 cells with PPL hexane extract increased the late apoptotic cells percentage to 77.34 ± 0 % (100 µg/mL) and 95.21 ± 1.61 % (200 μ g/mL) compared to control (3.81 ± 0.79 %), indicating that PPL hexane extract inhibits MDA-MB-231 cell viability through the apoptotic pathway. Similarly, PPS hexane extract treatment (100 and 200 µg/mL) increased the percentage of late apoptotic cells to 16.001 ± 1.15 and 52.58 ± 3.02%, respectively, compared to control cells (3.81 ± 0.79 %) (Figure 6 c and d), indicating that the apoptotic effect of PPS hexane extract increases depending on the concentration.


Table 1: Yield of *Psiadia punctulata* leaf and stem extracts in solvents with different polarities (CHCl₃, chloroform; EtOAc, ethyl acetate; MeOH, methanol)

Plant	Plant part (g)	Extract yield, g (%)			
		n-Hexane	CHCL ₃	EtOAc	MeOH
Psiadia punctulata	Leaves (41.34)	1.88	2.44	0.75	6.5
		(4.54)	(5.90)	(1.81)	(15.72)
	Stem (48)	1.3	1.31	0.23	7.3
		(2.70)	(2.72)	(0.47)	(15.20)

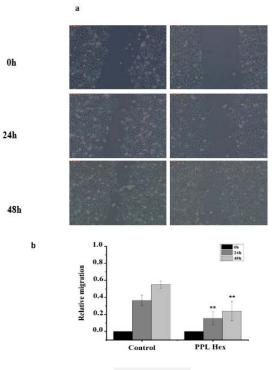
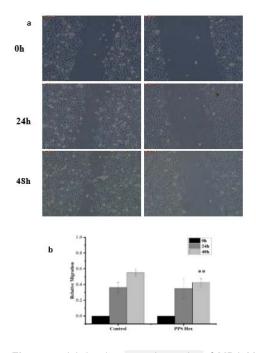


Figure 1: Cytotoxic effect of PPL Hex and (b) (PPS Hex) on MDA-MB-231 and MCF-7 cells using MTT and LDH release assays. (Top) Dose–response curves of the effects of five (a) PPL Hex and (b) PPS Hex concentrations after 48 h treatment

Figure 3: Morphological alterations of MCF-7 and MDA-MB-231 cells after 48 h treatment with PPL Hex and PPS Hex (magnification 200x). PPL, *Psiadia punctulata* leaf; PPS, *Psiadia punctulata* stem; Hex, hexane extract

Figure 2: (Bottom) LDH release assay showing significant cytotoxicity of (a) PPL Hex and (b) PPS Hex on cells. Data represent the mean \pm SD (p < 0.05) from triplicate experiments. PPL, *Psiadia punctulata* leaf; PPS, *Psiadia punctulata* stem; Hex, hexane extract; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; LDH, lactate dehydrogenase; SD, standard deviation. \blacksquare MDA-MB-231 \circ MCF-7

Figure 4: (a) In vitro scratch assay of MDA-MB-231 cells post treatment with PPL Hex extract. Cells were incubated with one-fourth of the IC₅₀ and pictures were taken at 0, 24 and 48 h. (b) Results are presented as mean \pm standard deviation from triplicate experiments; ***p* < 0.05 vs. control cells (Student's two-tailed *t*-test). PPL, *Psiadia punctulata* leaf; Hex, hexane extract; LC₅₀, half-maximal inhibitory concentration


Trop J Pharm Res, April 2022; 21(4): 772

Caspase-3/7 fluorescence results

Apoptosis is frequently associated with caspases activation. In this experiment, the effect of PPL and PPS hexane extracts on caspase-3/7 activation using fluorescent microscopy was investigated. MDA-MB-231 cells treated with IC_{50} of PPL and PPS hexane extracts caused an increase in caspase-3/7 expression in the treated cells, as shown by a bright green fluorescence when compared to the control (low fluorescence intensity) (Figure 7).

Phytochemical content of Psiadia punctulata

GC-MS profile of PPL hexane extract indicated the presence of 37 phytoconstituents when their mass spectra were compared with the NIST library (Table 2). The most abundant compounds were 2-methyl-heptane (5.55 %), 3-methylheptane (5.56 %), 2- β -pinene (11.77 %), 2, 6, 10, 14, 18, 22-tetracosahexaene (7.78%) and nonacosane (8.60 %). GC-MS result of PPS hexane extract indicated the presence of 40 phytoconstituents (Table 3). The most abundant compounds were 1, 2, 4-trimethyl-benzene, tetratetracontane and pentacosane.

Figure 5: (a) *In vitro* scratch results of MDA-MB-231 cells post treatment with PPS Hex extract. Cells were incubated with one-fourth of the LC₅₀, and pictures were taken at 0, 24 and 48 h. (b) Results are presented using the mean \pm standard deviation from triplicate experiments; ***p* < 0.05 vs. control cells (Student's two-tailed *t*-test). PPS, *Psiadia punctulata* stem; Hex, hexane extract; LC₅₀, half-maximal inhibitory concentration

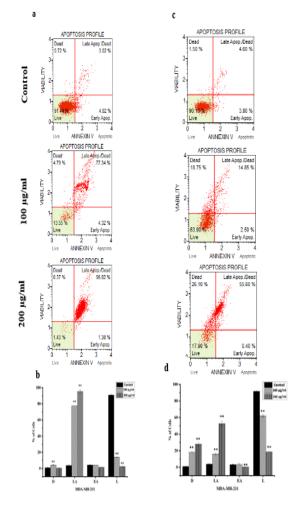
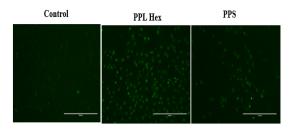



Figure 6: (a) Apoptotic potential of two different concentrations of PPL Hex extract (100 and 200 μ g/mL) was assessed using MuseTM cell analyser. (b) Bar charts revealing the total apoptotic percentage of cells post treatment with PPL Hex extract. PPL, *Psiadia punctulata* leaf; Hex, hexane extract. (c) Apoptotic potential of two different concentrations of PPS Hex extract (100 and 200 μ g/mL) was assessed using MuseTM cell analyzer. (d) Bar charts revealing the total apoptotic percentage of cells post treatment with PPS Hex extract PPS, *Psiadia punctulata* stem, Hex and hexane extract

Figure 7: Caspase-3/7 activation in MDA-MB-231 cells. Caspase-3/7 was activated posttreatment with PPL and PPS Hex. PPL, *Psiadia punctulata* leaf; PPS, *Psiadia punctulata* stem; Hex, hexane extract

DISCUSSION

Plants are a "treasure" of bioactive compounds that can be used to treat numerous human diseases. In the past few decades, many plantbased drugs have been commercialised [8]. This study provides details of the apoptotic potential of the leaf and stem extracts of P. punctulata. Bader et al [9] reported that treatment with a P. punctulata root hexane extract has a cytotoxic effect on HeLa and Jurkat cells with an IC₅₀ of 71 ± 3.1 and 73 ± 2.5 µg/mL, respectively [9]. Studies have also reported the cytotoxic effect of a methanol extract of P. punctulata aerial parts on 5637 and MCF-7 cells with an IC50 of 41.9 ± 0.2 and 93 ± 4.8 µg/mL, respectively [10]. However, there are no detailed reports on apoptosis and cell migration activities of P. punctulata. In this study, we performed both MTT and LDH release assays in order to confirm the cytotoxicity of PPS and PPL hexane extracts. Both PPS and PPL hexane extracts showed concentration-dependent cytotoxicity by decreasing the viability of the cancer cells tested. LDH release is an indication of irreversible death attributed to cell membrane damage [11], which is caused by the plant's cytotoxic nature and confirms its anticancer potential [12].

Antiproliferative investigation showed that both MCF-7 and MDA-MB-231 cells were successfully inhibited by the extracts of *Psiadia punctulata*. *P. punctulata* extracts induced morphological changes on both cell lines tested at 24 h of treatment. Among the signs of apoptosis process is the presence of cell shrinkage, nuclear fragmentation, blebbing and chromatin condensation [13],

 Table 2: Molecular weight (MW), retention time (RT), and area percentage found in *Psiadia punctulata* leaf hexane extract (PPL Hex)

No.	Name of compound	Chemical	Molecular weight	Retention	Area (%)
		formula	(g/mol)	time	
1	3,3-dimethyl- hexane	C ₈ H ₁₈	114.23	3.75	0.990
2	2,4-dimethyl-hexane	C8H18	114.23	3.61	3.110
3	2,3-dimethyl- hexane	C ₈ H ₁₈	114.23	4.04	2.280
4	2-methyl-heptane	C ₈ H ₁₈	114.23	4.12	5.550
5	3-methyl-heptane	C ₈ H ₁₈	114.23	4.25	5.560
6	Octane	C ₈ H ₁₈	114.23	4.69	0.850
7	1,4-dimethyl-benzene	C ₈ H ₁₀	106.17	6.03	1.680
8	1-ethyl-3-methyl-benzene	C ₉ H ₁₁	119.18	7.65	1.160
9	2-beta-pinene	C ₁₀ H ₁₆	136.23	7.92	11.770
10	Beta-myrcene	C10H16	136.23	8.08	4.400
11	1,2,4-trimethyl-benzene	C ₉ H ₁₂	120.19	8.25	3.360
12	DL-limonene	C10H16	136.23	8.80	0.360
13	Alpha-copaene	C ₁₅ H ₂₄	204.35	13.98	0.780
14	Alpha-gurjunene	C15H24	204.35	14.41	0.300
15	Trans-caryophyllene	C ₁₅ H ₂₄	204.35	14.62	1.820
16	Alpha-humulene	C15H24	204.35	15.08	1.680
17	3,7-guaiadiene	C ₁₅ H ₂₄	204.35	15.32	0.910
18	Germacrene-d	C ₁₅ H ₂₄	204.35	15.40	4.450
19	Beta-selinene	C ₁₅ H ₂₄	204.35	15.51	0.490
20	3,7-guaiadiene	C15H24	204.35	15.57	2.980
21	(-)-caryophyllene oxide	C15H24O	220.35	16.69	3.390
22	1h-cycloprop[e]azulen-4-ol	C ₁₅ H ₂₆ O	222.37	17.19	1.820
23	Megastigma-5,7-diene	C ₁₉ H ₃₀ O ₈	386.44	18.04	0.340
24	3,5,7-nonatrien-2-one	C9H12O	136.19	18.35	0.670
25	Beta-ionone	C ₁₃ H ₂₀ O	192.3	18.54	1.000
26	Aristolen	C15H24	204.35	18.89	0.270
27	Phytol acetate	C22H42O2	338.6	19.36	1.150
28	Falcarinol	C17H24O	244.37	22.38	0.710
39	Phytol	C ₂₀ H ₄₀ O	128.17	23.15	0.870
31	3-cyclohexene-1-ethanol	C ₈ H ₁₄ O	126.2	26.56	1.000
31	Kauren-19-yl-acetate	C22H34O2	330.5	27.51	2.380
32	(-)-obtusane	C ₁₅ H ₂₃	203.35	27.70	0.690
33	1-methylene-2b-hydroxymethyl	C ₁₅ H ₂₆ O	222.37	27.84	5.670
34	Methyl alpha-ketopalmitate	C ₁₇ H ₃₂ O ₃	284	28.45	1.440
35	2,6,10,14,18,22-	C ₂₄ H ₃₈	326.6	29.33	7.780
	tetracosahexae	-211.000			
36	Nonacosane	C ₂₉ H ₆₀	408.6	29.92	8.600
37	Kauran-18-al	C ₂₂ H ₃₄ O ₃	346.5	30.25	0.350

Table 3: Molecular weight (MW), retention time (RT), and area found in <i>Psiadia punctulata</i> stem hexan	e extract
(PPS Hex)	

No.	Name of compound	Chemical	Molecular	Retention	Area (%)
4		formula	weight (g/mol)	time	1 000
1	2,4-dimethyl-hexane	C ₈ H ₁₈	114.23	3.60	1.820
2	3,3-dimethyl- hexane	C ₈ H ₁₈	114.23	3.73	0.590 1.500
3	2,3-dimethyl- hexane	C8H18 C8H18	114.23 114.23	4.01 4.10	
4	2-methyl-heptane				3.330
5	3,4-dimethyl-hexane	C ₈ H ₁₈	114.23	4.17 4.22	0.510
6 7	3-methyl-heptane	C ₈ H ₁₈	114.23		4.580
-	Octane	C ₈ H ₁₈	114.23	4.66	0.970
8	Ethyl-benzene	C ₈ H ₁₀	106.17	5.83	0.600
9	1,4-dimethyl-benzene	C ₈ H ₁₀	106.17 120.2	6.01 7.47	2.580
10	Propyl-benzene	C9H12	120.2	7.61	1.000 2.780
11	1-ethyl-2-methyl benzene	C9H12			
12	1-ethyl-4-methylbenzene		119.18	7.66	1.150
13	(-)-Beta-pinene	C ₁₀ H ₁₆	136.23	7.88	1.400
14	Beta-myrcene	C ₁₀ H ₁₆	136.23	8.04	0.230
15	1,2,4-trimethyl- benzene	C ₉ H ₁₂	120.19	8.22	6.580
16 17	2-ethyl-1,4-dimethyl-benzene	C ₁₀ H ₁₄	134.22	9.25	0.300
	Alpha-copaene	C ₁₅ H ₂₄	204.35	13.97	0.220
18	(-)-Beta-elemene	C ₁₅ H ₂₄	204.35	14.13	0.220
19	Trans-caryophyllene	C ₁₅ H ₂₄	204.35	14.59	0.790
20 21	Alpha-humulene	C ₁₅ H ₂₄	204.35	15.05	0.570 1.420
	Germacrene-d	C ₁₅ H ₂₄	204.35	15.37	
22	Eudesma-4(14),11-diene	C ₁₅ H ₂₄	204.35	15.48	0.160
23	Alpha-muurolene	C ₁₅ H ₂₄	204.35	15.54	0.440
24	Aromadendrene 2	C ₁₅ H ₂₄	204.35	16.34	0.130
25	1,6-Germacradien-5-ol	C ₁₅ H ₂₆	222.366	16.58	0.220
26	(-)-Caryophyllene oxide	C ₁₅ H ₂₄ O	220.35	16.67	0.580
27	Gamma-himachalene	C ₁₅ H ₂₄	204.35	17.17	0.340
28	(-)-Caryophyllene oxide	C15H24O	220.35	17.50	0.120
29	Juniper camphor	C ₁₅ H ₂₆ O	222.37	17.66	0.380
30	(-)-Caryophyllene oxide	C ₁₅ H ₂₄ O	220.35	17.87	0.160
31	(+-)-Pentalenene	C ₈ H ₆	102.13	18.86	0.120
32	Hexadecanoic acid	C ₁₆ H ₃₂ O ₂	256.43	22.22	2.330
33	Falcarinol	C17H24O	244.37	22.37	0.810
34	9-Octadecenoic acid	C ₁₈ H ₃₄ O ₂	282.47	24.61	0.650
35	Cholesta-8,24-dien-3-ol	C ₃₀ H ₅₀ O	426.7	27.52	0.620
36	Octadecanal	C ₁₈ H ₃₆ O	268.5	28.06	0.640
37	Tetratetracontane	C44H90	619.2	29.98	5.650
38	Caryophyllan-2,6-beta-oxides	C ₁₅ H ₂₆ O	222.37	30.22	0.840
39	(-)-Alpha-costol	C ₁₅ H ₂₄ O	220.35	31.01	0.590
40	Pentacosane	C ₂₅ H ₅₂	352.7	31.60	45.450

which can be observed using light and fluorescent microscopy. Cell death can take place via necrosis and apoptosis. Most anticancer drugs show their cytotoxicity by inducing apoptosis in malignant cells [14]. Plant extracts induce apoptosis in different cancer cell lines [15]. Changes to cellular morphological and nuclear features are the first signs of cell death.

One other important indicator of apoptosis is the translocation of phosphatidylserine (PS), which is detected by annexin V [16]. In the present investigation, apoptosis increased concentration-dependently posttreatment with PPS and PPL Hex are extracts. In addition, apoptosis was confirmed by fluorescent microscopy using the caspase-3/7 kit. Caspases are important mediators of apoptosis [17]. Treatment with PPL

and PPS hexane extracts resulted in bright nuclei (Figure $\underline{4}$), an indicator of apoptotic cells.

Although huge progress has been made in breast cancer detection and therapy, the fiveyear survival rate and prognosis are unsatisfactory [18]. The high mortality rate of breast cancer is due to metastasis, which is a complex process involving several steps: matrix degradation, migration, adhesion and invasion [19]. Inhibition of cancer cell migration is considered a potential approach to treating cancer [20]. Although P. punctulata showed cytotoxicity in different cancer cell lines, there are no reports on the effects of P. punctulata on cancer cell migration. This study showed that PPL and PPS hexane extracts at noncytotoxic concentrations (one-fourth of the IC₅₀) significantly inhibited MDA-MB-231 cell

Trop J Pharm Res, April 2022; 21(4): 775

migration, which have a strong capacity for migration and invasion. GC-MS analysis of the obtained extracts can be an interesting tool to identify the amount and nature of some active compounds in plants extracts used in drugs.

In this study, GC-MS analysis showed the presence of 37 phytoconstituents in PPL hexane extract (Table 2) and 40 phytoconstituents in PPS hexane extract (Table 3), some of which individually or combined possess anticancer activity. The other major phytoconstituents of PPL hexane extract do not have anticancer activity. However, minor phytoconstituents of PPL hexane extract, such as phytol, induce apoptosis in A549 (lung cancer) cells [21]. Dlimonene inhibits the growth of A549 and H1299 cells and inhibits the tumour growth in mice. Expression of apoptosis genes increases in cancer cells after D-limonene treatment [21] which also induces apoptosis against gastric and prostate cancers, both in vivo and in vitro [22].

Hexadecanoic acid shows anticancer activity against HCT-116 cells (colorectal cancer) [23]. However, a few phytoconstituents of plants extracts do not show anticancer activity as individual compounds; however, when they are combined with other compounds, they exude anticancer activity. For example, β -selinene, aromadendrene and α -terpinolene together show cytotoxicity against MCF-7 cells [24].

CONCLUSION

The stem and leaf extracts of *P. punctulata* exert cell migration inhibition and apoptotic activities on MDA-MB-231 cells. Combinations of the phytoconstituents appear to target multiple pathways, and hence, the extract combination is a promising approach to overcome multidrug resistance of cancer cells.

DECLARATIONS

Acknowledgement

This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through Research Groups Program grant no. RGP-1442 -0037.

Conflict of interest

No conflict of interest is associated with this work

Contribution of authors

The authors declare that this work was done by

the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by them. Abutaha conceived and designed the study, Abutaha, Almalki, AL-Mekhlafi1, Al-Keridis, El Hadi, and Wadaan collected and analysed the data, Abutaha wrote the manuscript and all authors read and approved the manuscript.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/rea d), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

REFERENCES

- 1. WHO: https://www.who.int/cancer/prevention/diagnosisscreening/breast-cancer/en/ accessed. 2020.
- 2. Fulda S. Evasion of apoptosis as a cellular stress response in cancer. International Journal of Cell Biology 2010; 2010.
- Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Marine Drugs 2010; 8(1): 47-58.
- Mahadeo K, Grondin I, Kodja H, Govinden JS, Laulloo SJ, Frederich M, Gauvin-Bialecki A. The genus Psiadia: Review of traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 2018; 210: 48-68.
- Dal Piaz F, Bader A, Malafronte N, D'Ambola M, Petrone AM, Porta A, Hadda TB, De Tommasi N, Bisio A, Severino L. Phytochemistry of compounds isolated from the leaf-surface extract of Psiadia punctulata (DC.) Vatke growing in Saudi Arabia. Phytochemistry 2018; 155: 191-202.
- Keriko JM, Nakajima S, Baba N, Iwasa J. Eicosanyl pcoumarates from a kenyan plant, psiadia punctulata: Plant growth inhibitors. Bioscience, Biotechnology, and Biochemistry 1997; 61(12): 2127-2128.
- Abutaha N. Apoptotic potential and chemical composition of Jordanian propolis extract against different cancer cell lines. Journal of Microbiology and Biotechnology 2020; 30(6): 893-902.
- Cragg GM, Boyd MR, Khanna R, Newman DJ, Sausville EA. Natural product drug discovery and development. In: Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. edn.: Springer; 1999; 1-29.
- Bader A, Abdallah QM, Abdelhady MI, De Tommasi N, Malafronte N, Shaheen U, Bkhaitan MM, Cotugno R.

Trop J Pharm Res, April 2022; 21(4): 776

Cytotoxicity of Some Plants of the Asteraceae Family: Antiproliferative Activity of Psiadia punctulata Root Sesquiterpenes. Rec Nat Prod 2019; 13: 307-315.

- Mothana RA, Kriegisch S, Harms M, Wende K, Lindequist U. Assessment of selected Yemeni medicinal plants for their in vitro antimicrobial, anticancer, and antioxidant activities. Pharmaceutical Biology 2011; 49(2): 200-210.
- Xia G-H, Chen B-A, Shao Z-Y, Lu H-X, Konstanze D, Hartmut D. Mechanism of 2-methoxyestradiol-induced apoptosis in myelodysplastic syndrome MUTZ-1 cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007; 15(2): 296-301.
- 12. Sivalokanathan S, Vijayababu MR, Balasubramanian MP. Effects of Terminalia arjuna bark extract on apoptosis of human hepatoma cell line HepG2. World Journal of Gastroenterology: WJG 2006; 12(7): 1018.
- Martelli AM, Zweyer M, Ochs RL, Tazzari PL, Tabellini G, Narducci P, Bortul R. Nuclear apoptotic changes: an overview. Journal of Cellular Biochemistry 2001; 82(4): 634-646.
- Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Experimental Cell Research 2000; 256(1): 42-49.
- 15. Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research 2003; 63(6): 1270-1279.
- Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP. Past, present, and future of annexin A5: from

protein discovery to clinical applications. Journal of Nuclear Medicine 2005; 46(12): 2035-2050.

- 17. Thornberry NA. Caspases: key mediators of apoptosis. Chemistry & biology 1998; 5(5): R97-R103.
- Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W. SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncology Letters 2016; 12(4): 2409-2416.
- Weng C-J, Yen G-C: The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clinical & Experimental Metastasis 2010; 27(5): 361-369.
- Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Review of Neurotherapeutics 2009; 9(4): 519-534.
- Yu X, Lin H, Wang Y, Lv W, Zhang S, Qian Y, Deng X, Feng N, Yu H, Qian B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets and Therapy 2018; 11:1833.
- Miller JA, Thompson PA, Hakim IA, Chow H-HS, Thomson CA. d-Limonene: a bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncology Reviews 2011; 5(1): 31-42.
- 23. Ravi L, Krishnan K. Cytotoxic potential of Nhexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol 2017; 12: 20-27.
- 24. Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, Bouajila J. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations. Molecules 2011; 16(10): 8273-8291.