Tropical Journal of Pharmaceutical Research January 2023; 22 (1): 143-150 **ISSN:** 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria.

> Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v22i1.20

Original Research Article

Hot water extract from spent mushroom substrate of Ganoderma lucidum improves immune function in immune-deficient mice

Yanling Liu^{1,2}, Tong Meng^{1,2}, Tong Wang^{1,2}, Jing Li¹, Wei Zhang^{1,2}, Biaosheng

Lin^{1,3}, Jihui Chen⁴, Zhanxi Lin¹*, Biaosheng Lin^{1,3*} ¹National Engineering Research Center of JUNCAO Technology, ²College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, ³Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, Fujian Province 364012, ⁴Fujian Hope Biotechnology Co, Ltd, Longyan, Fujian Province 364000, China

*For correspondence: Email: wenzilyla@126.com; Tel: +86-18259169900

Sent for review: 11 June 2022

Revised accepted: 24 December 2022

Abstract

Purpose: To investigate the effects of hot water extract of the spent mushroom substrate from Ganoderma lucidum (HWE) on the immune functions of immune-deficient mice in the presence or absence of cyclophosphamide.

Methods: The C57BL/6 mice were treated with varying doses of HWE and cyclophosphamide, and the spleen transcriptome was evaluated by high-throughput sequencing. Pathway enrichment analysis was conducted to generate an overview of differentially-expressed genes (DEGs) functions and interactions. Results: Significant DEGs were observed among the control (CK), normal control (HWE), model (CY), and high-dose HWE (CY + HWEH) groups (p < 0.05). Compared with CK group, HWE and CY + HWEH groups showed upregulation of genes (Alas2, CCNE1, and CCNA2), whereas genes encoding major histocompatibility complex components, costimulatory factors, proinflammatory chemokines, and inflammatory chemokines were significantly downregulated (p < 0.05). Compared with CY group, multiple tumor suppressor and tumorigenesis genes, such as CDKN1A, CDKN1B, MAPK10, and TN-C, were downregulated in CK, HWE, and CY + HWEH groups.

Conclusion: This study highlights changes in the spleen transcriptomic profiles of C57BL/6 mice treated with HWE and CY, indicating that HWE improves immunomodulation in a mouse model with immune deficiency. Hot water extract of the spent mushroom substrate from Ganoderma lucidum (HWE) has potentials as an immune enhancer in immunocompromised patients.

Keywords: Spleen transcriptome, Hot water extract, Ganoderma lucidum, Cyclophosphamide, Highthroughput sequencing, Immunomodulation

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) Budapest and the Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, Web of Science, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts

INTRODUCTION

Lingzhi (Ganoderma lucidum) is highly valued as a traditional medicinal fungus in Asia and has long been known to act as an immunomodulating agent with applications in the treatment of gastric cancer, hypertension, arthritis, chronic hepatitis, diabetes, asthma, nephritis, arteriosclerosis, and immunological disorders [1]. The effects of Lingzhi have been attributed to polysaccharides,

© 2023 The authors. This work is licensed under the Creative Commons Attribution 4.0 International License

which are thought to stimulate the immune system [2] and activate both innate and adaptive immune responses [3]. In Chinese herbal medicine, polysaccharides have been shown to regulate the immune system through multiple mechanisms [4]. Previous studies suggest that treatment with the hot water extract of a spent mushroom substrate from Lingzhi (HWE) enhances the immune functions of normal mice [5]. In addition, HWE treatment improved the cyclophosphamide-suppressed recoverv of immune functions in mice. However, the mechanisms underlying the immunomodulatory effects of HWE remain unknown.

This study investigated the effects of HWE on gene expression in the spleen of an immunedeficient mouse model by high throughput sequencing using Illumina Genome Analyzer II x. Then differentially-expressed genes (DEGs) were screened for different treatments. The deep analyses of DEGs, such as Gene Ontology analysis and Pathway enrichment analysis, were determined to better examine the specific effects of HWE treatment in immune-deficient mice and better understand the genes and pathways involved in regulating the immune response to HWE and cyclophosphamide.

EXPERIMENTAL

Animals

Sixty pathogen-free male C57BL/6 mice (7 weeks old, weighing 18 - 20 g) were purchased from Charles River Laboratories, Beijing, China (animal license number: SCXK (Beijing) 2012-0001). All animal protocols were approved by the Animal Care Committee of Peking University Health Center (approval no. LA2015055). All experiments were conducted in accordance with the guidelines for the Care and Use of procedures Laboratorv Animals [16]. All described below were conducted in accordance with the Inspection and Evaluation of Health Food [17].

Treatments

Mice were randomly allocated to six groups, ten for each group. The experimental period lasted for 28 days. Mice received injections on days 1, 7, 14, and 21 and were sacrificed on day 28. As shown in Table 1, mice in the cyclophosphamide model (CY), low-dose HWE (CY + HWEL), medium-dose HWE (CY + HWE_M), and highdose HWE (CY + HWE_H) groups were intraperitoneally injected with cyclophosphamide (100 mg/kg) (MACKLIN Shanghai Inc., Shanghai, China) on days 1, 7, 14, and 21, whereas the mice in the control (CK) and HWE groups were injected with normal saline. Mice in the HWE (1 g/kg body weight (BW)), CY + HWEL (0.5 g/kg BW), CY + HWE_M (1 g/kg BW), and CY + HWE_H (2 g/kg BW) groups were orally administered HWE daily, whereas water was given to the mice in the CK and CY groups.

All mice were sacrificed on day 28, and spleen samples were collected and immediately frozen in liquid nitrogen for later use. Extraction of HWE was performed as described previously [13].

Transcriptome sequencing

Allwegene Tech. (Beijing, China) performed RNA sequencing using an Illumina Genome Analyzer II x (Illumina, Inc., California, USA). The details of RNA extraction, RNA sequencing, differential expression analysis, and functional gene annotation are described in previous studies [8,13].

Differential expression analysis

For each sequenced library, differentiallyexpressed gene (DEG) analysis was performed using IDEG 6. The *p*-value corresponds to the differential gene expression test. The FDR value ≤ 0.001 and the absolute value of log₂ (fold change) ≥ 1 were used as the threshold criteria for determining significant differential expression.

Table 1: Treatment scheme for establishing immune-deficient mouse models

Group	Treatment	Cyclophosphamide (mg/kg)		
Control (CK)	Water	-		
Normal control (HWE)	1 g/kg HWE	_		
Cyclophosphamide model (CY)	Water	100		
Low-dose HWE (CY+HWEL)	0.5 g/kg HWE	100		
Medium-dose HWE (CY+HWE _M)	1 g/kg HWE	100		
High-dose HWE (CY+HWE _H)	2 g/kg HWE	100		

Key: CK, blank control; CY, cyclophosphamide model; HWE, hot water extract of Ganoderma lucidum spent mushroom substrate

RESULTS

Significant differentially-expressed genes and significant pathway enrichment analysis

Significant DEGs among the groups are shown in Figure 1. Compared with the CK group, 2,155 genes were significantly downregulated, and 1,318 genes were significantly upregulated in the CY + HWE_H group, whereas 216 genes were significantly downregulated, and 500 genes were significantly upregulated in the HWE group.

When compared with the CY group, there were 3869 genes significantly downregulated, and 786 genes were significantly upregulated in the CY + HWE_H group. In the CK group, 2647 genes were significantly downregulated and 574 genes were significantly upregulated in the CK group. were Moreover, 2798 genes significantly downregulated and 567 genes were significantly upregulated in the HWE group. The DEGs were classified into categories, with the largest proportion of DEGs clustered into cellular components, followed by biological processes and molecular functions.

Pathway enrichment analysis of differentially expressed genes

The pathway enrichment analysis was conducted to generate overviews of DEG functions and interactions, particularly for the HWE vs. CK, CY + HWE_H vs. CY, and HWE vs. CY group comparisons. To determine the functional distribution of DEGs, Gene ontology analysis was performed for the following group comparisons: CY + HWE_H vs. CK; HWE vs. CK; CY + HWE_H vs. HWE; CY + HWE_H vs. CY; CK vs. CY; and HWE vs. CY.

HWE vs CK

Significant DEGs between the CK and HWE groups were associated with various pathways. Staphylococcus aureus includina infection. porphyrin, and chlorophyll metabolism, phagosomes, malaria. hypertrophic cardiomyopathy, dilated cardiomyopathy, and glycerolipid metabolism (Figure 2). The DEGs associated with immune functions among the top 20 significantly enriched pathways identified in the comparison between the CK and HWE aroups.

In the pathway for porphyrin and chlorophyll metabolism (as shown in Table 2), *Alas2*, which encodes 5-aminolevulinic acid synthase, was upregulated by 2.49 folds in the HWE group, whereas *Ugt1a6b* (UDP glucuronosyltransferase 1 family, polypeptide A6B precursor) was downregulated when compared with the CK group.

Figure 2: Top 20 statistics of pathway enrichment for HWE vs CK

CY + HWE_H vs CY

The top 20 pathways associated with significant DEGs between the CY and CY + HWE_H groups included pathways in cancer. T-cell receptor mitogen-activated protein kinase signaling. (MAPK) signaling, human T-cell lymphotropic virus type 1 (HTLV-1) interaction, focal adhesion, cell adhesion molecules (CAMs), extracellular matrix (ECM)-receptor interactions. toxoplasmosis, and axon guidance (Figure 3). Some DEGs associated with immune function among the top 20 significantly enriched pathways identified in the comparison between the CY + HWE_H and CY groups.

Pathway	Gene	Gene ID	Encoded Protein	Fold (log₂ ratio)	P-value	FDR
Porphyrin and chlorophyll	alas2	11656	5-aminolevulinic acid synthase (EC 2.3.1.37), partial (<i>Mus musculus</i>)	2.49	0	0
metabolism	UGT1A6B	394435	UDP glucuronosyltransferase 1 family, polypeptide A6B precursor (<i>Mus musculus</i>)	-9.80	5.60E-07	3.38E-06

Table 2: Differential expressions of genes associated with immune function (HWE vs. CK)

Key: CK, control: FDR, false-discovery rate: HWE: hot water extract of Ganoderma lucidum spent mushroom substrate

Gene Style	Gene	Gene ID	Encoded Protein	Fold (log₂ ratio)	<i>P</i> -value	FDR
Pathway s in	CCNE1	12447	cyclin E (<i>Mus musculus</i>)	2.93	7.16E-16 6	3.06E-16 4
cancer	CCNA2	12428	cyclin-A2 (<i>Mus musculus</i>)	1.86	0	0
	CDKN1A	12575	cyclin-dependent kinase inhibitor 1A (P21), isoform CRA_b (<i>Mus</i> <i>musculus</i>)	-4.24	0	0
	CDKN1B	12578	cyclin-dependent kinase inhibitor 2A, isoform 3 isoform 2 (<i>Mus musculus</i>)	-2.93	1.70E-05	3.88E-05
Focal adhesion	MAPK10	26414	mitogen-activated protein kinase 10, isoform CRA_a (<i>Mus musculus</i>)	-7.23	0.00045	0.00089
	TRNP1	69539	TMF-regulated nuclear protein 1 (Mus musculus)	-4.63	5.66E-07	1.46E-06

Table 3: Differential expressions of genes associated with immune function (CY+HWE_H vs. CY)

Keys: CY: cyclophosphamide; FDR, false-discovery rate; HTLV-1: human T-cell lymphotropic virus type 1; HWE_H: high-dose hot water extract of Ganoderma lucidum spent mushroom substrate; MAPK: mitogen-activated protein kinase

As shown in Table 3, in the pathways in cancer, cyclin E (*CCNE1*) and cyclin A2 (*CCNA2*) were upregulated 2.93-fold and 1.86-fold, respectively, in the CY + HWE_H group when compared with the CY group, whereas *CDKN1A* and *CDKN1B* were downregulated in the CY + HWE_H group, with a 4.24-fold increase in *CDKN1A* expression observed in the CY group. In the focal adhesion pathway, mitogen-activated protein kinase 10, isoform CRA (*MAPK10*), and TMF-regulated nuclear protein 1 (*TRNP1*) were upregulated 7.23-fold and 4.63-fold, respectively, in the CY + HWE_H group compared with the CY group.

HWE vs CY

The top 20 enriched pathways associated with significant DEGs between the CY and HWE groups included regulation of the actin cytoskeleton, pathways in cancer. focal adhesion, cytokine-cytokine receptor interaction, dilated cardiomyopathy, CAMs, ECM-receptor interaction, axon guidance, and amoebiasis (Figure 4). Some DEGs associated with immune functions were among the top 20 significantly enriched pathways identified in the comparison between the HWE and CY groups.

As shown in Table 4, *TN-C* was upregulated by 3.06-fold in the CY group when compared with

the HWE group. Cyclophosphamide injection results in injury, leading to increased expression of the protein encoded by *TN-C*. Likewise, *GLI2* was also upregulated by 3.02-fold in the CY group when compared with the HWE group, whereas *CTLA4* expression in the HWE group was 2.04-fold than in the CY group.

Figure 3: Top 20 statistics of pathway enrichment for CY + HWE_H vs CY

The HWE group showed more downregulated genes than the CY group. Genes such as MGST3, CPNE5, FAM132A, and HMMR were upregulated. whereas GLI1. GLI2. TN-C. VEGFA. PDCD1, and CDKN1A were downregulated in the HWE group when compared with the CY group.

DISCUSSION

Ganoderma lucidum polysaccharide is the major biologically active component in *G. lucidum* [6] and regulates specific immune cell functions, including T lymphocytes, B lymphocytes, macrophages, dendritic cells, and natural killer cells [7]. A previous study showed that HWE can enhance murine immune functions [5].

Differential pathway enrichment analysis between the HWE and CK groups identified significant differences in pathways related to systemic lupus erythematosus, dilated cardiomyopathy, and hypertrophic cardiomyopathy, and DEGs were also concentrated in pathways associated with pyruvate metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways.

Figure 4: Top 20 statistics of pathway enrichment for HWE vs CY

Gene	Gene	Gene	Encoded Protein	Fold	P-value	FDR
Style		ID		(log₂ ratio)		
Pathways in cancer	MGST3	66447	microsomal glutathione S transferase 3 (<i>Mus</i> <i>musculus</i>)	3.12	5.22E-176	3.17E-174
	FAM132A	67389	protein FAM132A precursor (<i>Mus musculus</i>)	2.14	1.57E-77	3.78E-76
	CDKN1A	12575	cyclin-dependent kinase inhibitor 1A (P21), isoform CRA_b (<i>Mus musculus</i>)	-4.23	0	0
	GLI1	14632	zinc finger protein GLI1 (Mus musculus)	-3.19	5.29E-06	1.57E-05
	GLI2	14633	zinc finger protein GLI2 (Mus musculus)	-3.02	2.06E-08	7.62E-08
	VEGFA	22339	vascular endothelial growth factor A isoform 6 precursor (Mus musculus)	-2.59	5.44E-229	4.24E-227
ECM- receptor	FAM132A	67389	protein FAM132A precursor (<i>Mus musculus</i>)	2.14	1.57E-77	3.78E-76
interaction	HMMR	15366	hyaluronan mediated motility receptor (<i>Mus musculus</i>)	1.08	1.68E-25	1.38E-24
	TN-C	21923	tenascin precursor (<i>Mus</i> <i>musculus</i>)	-3.06	3.32E-10	1.39E-09
Cell adhesion molecules (CAMs)	CTL4	12477	cytotoxic T-lymphocyte- associated protein 4 (<i>Mus</i> <i>musculus</i>)	2.04	2.03E-13	1.02E-12
Focal adhesion	FAM132A	67389	protein FAM132A precursor (<i>Mus musculus</i>)	2.14	1.57E-77	3.78E-76

Table 4: Differential expression of genes associated with immune function (HWE vs. CY)

Keys: CY: cyclophosphamide; ECM: extracellular matrix; FDR: false-discovery rate; HWE: hot water extract of Ganoderma lucidum spent mushroom substrate

The porphyrin and chlorophyll metabolism pathway was associated with DEGs encoding metabolic enzymes, such as Alas2, one of two genes that encode aminolevulinic acid synthase. the first regulatory enzyme in the heme biosynthetic pathway [8]. Expression of Ugt1a6b (UDP glucuronosyltransferase family. 1 polypeptide A6B precursor), which encodes a glucuronyltransferase, was downregulated in the HWE group compared with the CK group. In mice, 14 Ugt genes (including five pseudogenes) and 10 Ugt2 genes have been identified. The function of UGT1A6 is to catalyze simple alucuronidation. phenolic and the neurotransmitter serotonin (5-hydroxytryptamine) is a typical endogenous substrate [9].

Significant differences between the CY + HWE_H and CY groups were observed for the expression of CCNE1 and CCNA2, which encode cyclin family member cyclin E and cyclin A2, respectively. Expression of CCNE1 and CCNA2 was upregulated by 2.93-fold and 1.86-fold, respectively, in the CY + HWE_H group compared with the CY group. Amplification of CCNE1, observed in many patients, is critical for cancer cell survival [10]. High CCNE1 expression is a significant and independent predictor for prolonged overall survival in patients with grade III/IV epithelial ovarian cancer [11]. In the present study, cyclin-associated gene expression was upregulated following high-dose HWE treatment when compared with cyclophosphamide alone, indicating that HWE may attenuate the adverse reactions and damage induced by cyclophosphamide and improve prognosis.

Expression of MAPK10 was upregulated by 7.23fold in the CY group when compared with the CY + HWE_H group. Mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) family members participate in multiple signaling pathways, including apoptosis, differentiation, and proliferation [12], and mitogen-activated protein kinase 10 (MAPK10), also known as JNK3, promotes apoptosis and plays a role in tumor suppression. Compared with the CY group, lymphotoxin A (LTA), which encodes an inflammatory interleukin primarily synthesized by lymphocytes, and Matn1 expression were downregulated in the CY + HWE_H group. The protein encoded by Matn1 is a cartilage matrix protein precursor that has been reported to be necessarv for cerebellar aranule neuron production [13] and hair cell production [14].

Glycoprotein tenascin C, an adhesion-regulating protein responsible for various functions within cells that is dysregulated under pathological conditions, such as inflammation, infection, and tumors [15], is encoded by TN-C. In this study, TN-C expression in the CY group was 3.06-fold that in the HWE group. Cyclophosphamide injection induced injury in mice, leading to an upregulation in the protein encoded by TN-C. Tenascin C is a member of the ECM glycoprotein family, and TN-C is upregulated during development and embryogenesis. Upregulation of TN-C has been reported during tissue repair, remodelina. and pathological conditions. includina inflammation. infection. neovascularization. wound healing. and tumorigenesis [16]. The expression of GLI2 in the CY group was 3.02-fold that in the HWE group. and GLI2 encodes a C2H2-type zinc finger transcription factor that belongs to the GLI family. which is involved in the Hedgehog (Hh) signaling pathway that plays an important role in regulating embryonic tissue differentiation and development [17].

A previous study showed that HWE improved the recovery of cyclophosphamide-impaired immune mice bv increasing function in serum concentrations of superoxide dismutase and catalase and total antioxidative capacity [5]. When utilized as a feed additive, G. lucidum HWE enhanced the immunity and antioxidant capacity of dairy cows, thereby improving milk quality [18], milk yield, and hematology parameters, suggesting that HWE may be useful and functional as a feed additive.

Compared with the CK group, the tumorassociated antigen-encoding gene CHP2 is upregulated in the HWE and CY + HWE_H groups, whereas genes encoding co-suppressors, major histocompatibility complex molecules. costimulatory proinflammatory factors, chemokines, some inflammatory and chemokines were downregulated by HWE treatment. In addition, compared with an immunocompromised mouse model, some tumor suppressive and tumorigenic genes were downregulated in the CK, HWE, and CY + HWEH groups, such as CDKN1A, CDKN1B, MAPK10. VASH1, and TN-C.

CONCLUSION

Spleen transcriptomics analysis in mice has shown significant differences in gene expression among the CK, CY, HWE, and CY + HWE_H groups. These results indicate that HWE improves immune function in low-immunity mice. Hot water extract of the spent mushroom substrate from *Ganoderma lucidum* (HWE) has potentials for further investigation as an immune enhancer in immunocompromised patients.

DECLARATIONS

Acknowledgements

Project support was provided by a fund opened by the Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology, Longyan University (Grant no. 2021KF02) and Interdisciplinary Integration to promote the high-quality development of JUNCAO Science and Industry (no. XKJC-712021030).

Funding

None provided.

Ethical approval

None provided.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of Interest

No conflict of interest associated with this work.

Contribution of Authors

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. Yanling Liu and Zhanxi Lin conceived and designed the study. Tong Meng, Wei Zhang, and Jing Li conducted the experiments and performed the biochemical analysis and part of the histological study. Biaosheng Lin and Jihui Chen analyzed the data, and Yanling Liu wrote the manuscript. All the authors read and approved the manuscript.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/rea d), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

REFERENCES

- Bhardwaj N, Katyal P, Sharma A. Suppression of inflammatory and allergic responses by pharmacological Potent Fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov 2014; 8(2): 104-117.
- 2. Zhu X, Chen A, Lin Z. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J Ethnopharmacol 2007; 111(2): 219-226.
- Jin X, Ruiz Beguerie J, Sze D, Chan G. Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev 2016; 4(4): 1-32.
- Huang Q, Li L, Chen H, Liu Q, Wang Z. GPP (Composition of Ganoderma lucidum Poly-saccharides and Polyporus umbellatus Poly-saccharides) Enhances innate immune function in mice. Nutrients 2019; 11(7): 1480.
- Liu Y, Mei L, Li J, Wang A, Luo H, Lin Z. Effect of JUNCAO-cultivated Ganoderma lucidum spent mushroom substrate-hot water extract on immune function in mice. Trop J Pharm Res 2018; 17(2): 261-267.
- Zhao R, Chen Q, He Y. The effect of Ganoderma lucidum extract on immunological function and identify its antitumor immunostimulatory activity based on the biological network. Sci Rep 2018; 8(1): 12680.
- Huang A, Cao S, Tang L. The tumor microenvironment and inflammatory breast cancer. J Cancer 2017; 8(10): 1884-1891.
- Whatley SD, Ducamp S, Gouya L, Grandchamp B, Beaumont C, Badminton MN, Elder GH. C-terminal deletions in the ALAS2 gene lead to a gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet 2008; 83(3): 408–414.
- Asai Y, Sakakibara Y, Nadai M, Katoh M. Effect of carbamazepine on expression of UDPglucuronosyltransferase 1A6 and 1A7 in rat brain. Drug Metab Pharmacokinet 2017; 32(6): 286-292.
- Nakayama K, Rahman MT, Rahman M, Nakamura K, Ishikawa M, Katagiri H, Sato T, Ishibashi T, Iida K, Ishikawa N, et al. CCNE1 amplification is associated with aggressive potential in endometrioid endometrial carcinomas. Int J Oncol 2016; 48(2): 506-516.
- 11. Pils D, Bachmayr-Heyda A, Auer K, Svoboda M, Auner V, Hager G, Obermayr E, Reiner A, Reinthaller A, Speiser P, et al. Cyclin E1 (CCNE1) as an independent positive prognostic factor in advanced stage serous ovarian cancer patients-a study of the OVCAD consortium. Eur J Cancer 2014; 50(1): 99-110.
- 12. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103(2): 239-252.
- 13. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3(6): 415-428.
- 14. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY. Math1 is

Trop J Pharm Res, January 2023; 22(1): 149

essential for the genesis of cerebellar granule neurons. Nature 1997; 390(6656): 169-172.

- 15. Chiquet-Ehrismann R. Tenascins. Int J Biochemi Cell Biol 2004; 36(6): 986-990.
- Bélanger I, Beaulieu JF. Tenascin in the developing and adult human intestine. Histol Histopathol 2000;15(2): 577-585.
- 17. Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS, Quinn AG, Philpott MP, Anna- Frischauf M,

Aberger F. The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 2004; 23(6): 1263-1274.

18. Liu Y, Zhao C, Lin D, Lin H, Lin Z. Effect of water extract from spent mushroom substrate after Ganoderma balabacense cultivation by using JUNCAO technique on production performance and hematology parameters of dairy cows. Anim Sci J 2015; 86: 855–862.