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Abstract 

Purpose: To study the effect of simvastatin on behavioral performance in a rat model of autism, and its 
effect on hippocampal brain-derived BDNF-TrkB pathway.  
Methods: Twelve rats with valproic acid (VPA)-induced autism were randomly divided into model group 
and simvastatin group, while six healthy rats served as normal control group. Rats in the simvastatin 
group received the drug (5 mg/kg) via i.p. route, while rats in model group and normal control group 
were injected with equivalent volume of normal saline in place of simvastatin. Capacity for interaction 
and repetitive stereotyped behavior, as well as results of Morris water maze test were determined for 
each group. The expressions of BDNF-TrkB proteins were assayed with immunoblotting.  
Results: The frequencies of sniffing normal saline, alcohol and rat urine were significantly higher in 
model and simvastatin rats than in normal rats, but they were significantly lower in simvastatin-treated 
rats than in model rats (p < 0.05). There was higher duration of turning, jumping and grooming in the 
model group and simvastatin group than in the normal rats, but the duration was significantly reduced in 
simvastatin rats, relative to model rats. Escape latency times was significantly longer in model and 
simvastatin rats than in controls, but number of target quadrant crossings was significantly reduced. 
However, escape latency time was lower in simvastatin rats than in model rats, but number of target 
quadrant crossings was significantly higher. The model and simvastatin rats had down-regulated levels 
of BDNF and TrkB protein, relative to control rats, but there were markedly higher levels of these 
proteins in simvastatin-treated rats than in model rats.  
Conclusion: Simvastatin improves the behavioral performance of autistic rats by regulating BDNF/TrkB 
signal axis. This finding may be useful in the development of new drugs for treating autism.  
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INTRODUCTION 
 

Autism spectrum disorder (ASD) refers to 
syndrome that features sustained deficits in 
socialization and interactive behavior, 
stereotyped behavior, and limited concerns [1]. 
Nowadays, autism has become a serious health 

issue of public concern. It has been reported that 
the ASD cases in USA have risen from 1 in 68 
people in 2012, to 1 in 59 in 2018 [2]. At present, 
not much is clearly known about the 
pathogenesis of ASD. Although research 
suggests that it is due to the negative effects of 
factors such as environment and gene on 
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neurodevelopment [3], the specific mechanism is 
still unclear. Research findings indicate that ASD 
results in hippocampal lesions due to 
disappearance of some neurons and granular 
cells, decreased Purkinje cell count and 
cerebellar atrophy, physiological changes in the 
temporal lobe, delayed sensorimotor 
development, and alterations in prefrontal cortical 
synaptic linkages [4]. These lesions predispose 
to ASD and impairment of cognition. Recent 
evidence suggests that distortion of the balance 
in excitatory and antagonistic transmissions at 
the synapses may be involved in the behavioral 
manifestations associated with ASD [5]. Overall, 
the imbalance between excitatory and 
antagonistic synaptic transmissions may be 
implicated in the etiology of ASD. Brain-derived 
neurotrophic factor (BDNF) plays an important 
role in the survival, growth and differentiation of 
neuronal cells, while tyrosine kinase receptor B 
(TrkB) is the main receptor of BDNF which 
performs a regulatory role in downstream 
signaling pathways after binding to BDNF and 
activating its biological effects. Studies have 
shown alterations in the expressions of BDNF 
and TrkB in the hippocampus of autism mouse 
model, indicating that these proteins are 
associated with autism [6]. In addition, it was 
found that simvastatin improved the behavioral 
performance of VPA-induced autism model in 
mice [7]. Moreover, simvastatin significantly 
regulated the activities of BDNF and TrkB in rats 
with Parkinson's disease [8]. However, it is not 
clear whether simvastatin improves the 
behavioral performance of autistic rats by 
affecting the BDNF/TrkB pathway in the 
hippocampus. Therefore, this study was carried 
out to investigate the effect of simvastatin on 
protein expressions of BDNF/TrkB pathway in 
the hippocampus of VPA-induced autistic rats, 
and its effect on behavioral performance of rats. 
 

EXPERIMENTAL 
 
Establishment of rat model of autism, and 
animal grouping 
 
A total of 20 healthy female and 10 healthy male 
adult Wistar rats were used in this study. The 
animals were raised and fed in a clean 
environment. At 7 pm, the male and female rats 
were caged in the ratio of 2:1, and vaginal 
smears were collected on the following day at 7 
am. If sperm was observed in the smears, that 
day was marked as the first day of pregnancy. At 
12½ days of gestation, 10 pregnant rats were 
randomly injected intraperitoneally with VPA at a 
dose of 600 mg/kg. The resultant neonatal rats 
(offspring of pregnant rats) were used as the 
autism rat model. A total of 87 neonates of 

autism model were delivered. Two pregnant rats 
were randomly selected and intraperitoneally 
injected with equivalent dose of normal saline, 
and the offspring of these pregnant rats served 
as normal control. The number of offspring of the 
normal control group delivered was 23. Six 
autistic neonatal rats chosen at random, were 
given simvastatin. They received intraperitoneal 
injection of simvastatin (5 mg/kg) for 2 weeks. 
Another set of 6 neonatal rats were randomly 
selected as the model group, and they were 
given an equivalent amount of normal saline via 
intraperitoneal injection for 14 days. Six young 
rats in the normal control group served as the 
control group, and the same amount of normal 
saline was injected intraperitoneally for 14 days. 
 
Ethical approval 
 
This research was approved by the Animal 
Ethical Committee of Yangzhou University 
(approval no. 20220102), and was conducted 
according to the guidelines of "Principles of 
Laboratory Animal Care" (NIH publication no. 85-
23, revised 1985) [9]. 
 
Evaluation of behavior 
 
Social communication test 
 
The rats were placed in a clean and odor-free 
observation box with dimensions 60cm x 60cm x 
40cm. Cotton swabs stained with normal saline, 
rat urine and alcohol were placed at a distance of 
10cm from the bottom of the box. The rats were 
monitored to see how often they sniffed the 
cotton swabs. Replacement of the cotton buds 
was done three times during the test period, and 
the test was repeated three times. The number of 
times a rat sniffed each cotton swab was 
recorded. 
 
Determination of repeated stereotyped 
behavior  
 
The rats were placed in observation boxes of 
dimensions 48cm x 24cm x 20 cm. The inner 
side of each observation box was equipped with 
an infrared generator and detector. Prior to 
recording rat activity, the infrared ray was 
blocked, and the surrounding environment was 
kept completely noise-free. Then, the cumulative 
frequencies of jumping, turning and grooming of 
rats were recorded within 30min. 
 
Morris water maze test 
 
The test included an acquisition phase in the first 
6 days, and an assessment test on the seventh 
day. The platform navigation test was conducted 
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for 6 days, and each test time lasted for 60 sec. 
Each rat was put in the water at 1 of the 4 
quadrants, and it was permitted to locate the 
platform without assistance. The test was done 
four times daily, and rats had 60 sec to locate the 
platform. If a rat was successful in locating the 
platform, it was permitted to tarry on it for 20 sec. 
If it was unable to locate the platform within 60 
sec, the rat was guided to it and permitted to stay 
on it for 20 sec. Escape latency was the time 
spent finding the hidden platform. It was 
accurately determined with a video tracking 
appliance. On day 7 of the test, the space 
detection test involving removal of the platform 
was carried out. The rats were tested with 
respect to their ability to locate the previous 
position of the platform. Four trials were 
conducted. The number of crossings of the target 
quadrant was recorded using a video tracking 
device as indicated before. 
 
Determination of protein expressions 
 
Total protein was extracted from hippocampal 
tissues using RIPA, and determined using 
Western blotting. The protein lysates were 
centrifuged, and the protein content of each 
lysate was determined using BCA method. 
Thereafter, equal amounts of protein (50-μg 
samples) were resolved on 10% SDS-
polyacrylamide gel (Invitrogen, Carlsbad, CA, 
USA) electrophoresis and transferred to PVDF 
membranes (Millipore, Bedford, MA, USA). The 
membranes were blocked with TBST containing 
5 % non-fat milk solution in 0.05 % Tween 20 for 
1 h at room temperature. This was followed by 
overnight incubation with specific primary 
antibodies at 4 °C. Then, the membranes were 
incubated with horseradish peroxidase (HRP)-
conjugated secondary antibody for 2 h at room 
temperature. The immuno-positive bands were 
scanned using ImageJ software, while amounts 
of different proteins were computed with 
densitometric analysis. 

Statistical analysis  
 
Data analysis was done with SPSS 23.0 software 
package. Measurement data are expressed as 
mean ± SD, comparison amongst multiple 
groups was carried out with one-way ANOVA, 
while LSD-t test was used for pairwise 
comparison. Statistical significance was 
assumed at p < 0.05. 
 

RESULTS 
 
Interactive ability of rats  
 
The durations of sniffing normal saline, alcohol 
and rat urine were markedly higher in model and 
simvastatin rats than in normal rats, but they 
were significantly lower in the simvastatin group 
than in the model group (p < 0.05). These results 
are presented in Table 1. 
 
Repetitive stereotyped behavior of rats  
 
The frequency of turning, jumping and grooming 
for rats was significantly higher in model and 
simvastatin rats than in normal rats, but was 
significantly lower in the simvastatin group than 
in the model group (p < 0.05; Table 2). 
 
Learning and memory abilities of rats  
 
The escape latency times of model and 
simvastatin rats were significantly higher than 
that of normal rats, while the number of crossings 
of the target quadrant was significantly lower 
than that in the control group (p < 0.05). In 
contrast, the escape latency time of rats in 
simvastatin group was significantly lower than 
that of model rats, while the number of crossings 
of the target quadrant was significantly higher 
than that in the model group (p < 0.05). These 
results are shown in Table 3. 

 
Table 1: Comparison of interactive ability of rats amongst the groups (mean ± SD, n = 6) 

 

Group Normal saline (s) Alcohol (s) Rat urine (s) 

Control 8.12 ± 1.42 5.26 ± 1.24 11.84 ± 2.59 
Model  12.41 ± 1.73a 7.83 ± 1.86a 22.58 ± 2.96a 
Simvastatin 10.53 ± 1.50ab 6.03 ± 1.42ab 16.37 ± 2.60ab 

aP < 0.05, compared with normal group; bp < 0.05, compared with model group 
 

Table 2: Frequencies of repetitive stereotyped behaviors of rats in each group (mean ± SD, n = 6) 
 

Group Turning Jumping Grooming 

Control  172.65 ± 6.84 173.37 ± 8.29 176.85 ± 8.16 
Model  241.86 ± 7.89a 268.48 ± 10.27a 284.34 ± 11.87a 
Simvastatin 213.76 ± 7012ab 235.24 ± 9.85ab 226.85 ± 10.21ab 

aP < 0.05, vs normal rats; bp < 0.05, vs model rats 
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Table 3: Learning and memory abilities of rats in each 
group (mean ± SD, n = 6) 
 

Group 
Escape latency 

time (s) 

Frequency of 
crossing 

of target quadrant 

Control  13.28 ± 2.38 6.24 ± 2.18 
Model  22.73 ± 2.97 a 2.27 ± 1.05 a 
Simvastatin 18.67 ± 2.65 ab 3.85 ± 1.37 ab 
aP < 0.05, compared with the normal group; bp < 0.05, 
compared with model group 

 
Protein expression levels of BDNF and TrkB  
 
The protein expression levels of BDNF and TrkB 
were markedly down-regulated in the model and 
simvastatin rats, relative to control rats, but they 
were markedly higher in simvastatin-treated rats 
than in model rats (p < 0.05). These results are 
shown in Table 4. 
 
Table 4: Protein expression levels of BDNF and TrkB 
in each group (mean ± SD, n = 6) 
 

Group BDNF Trkb 

Control  1.16 ± 0.26 0.86 ± 0.13 
Model  0.65 ± 0.17 a 0.57 ± 0.08 a 
Simvastatin 0.89 ± 0.21 ab 0.71 ± 0.14 ab 
aP < 0.05, vs normal rats; bp < 0.05, vs model rats 

 

DISCUSSION  
 
Many investigations have suggested a causal 
link between environment/gene and autism. 
Therefore, the establishment of animal models of 
autism is essential in autism research. It has 
been reported that in utero administration of VPA 
led to neuro-developmental abnormalities 
consistent with the clinical features of ASD [10]. 
In this study, the neonatal rats delivered by 
pregnant rats after prenatal injection of VPA 
served as model for research on ASD. Previous 
research found that microanatomy and 
macroanatomy are associated with variations in 
brains of ASD subjects [11]. Hippocampal 
structural changes that regulate perception of 
emotion are associated with ASD-like behavior 
[12]. Moreover, alterations in neurochemistry due 
to impairment of metabolic pathways of 
catecholamines were reported in ASD patients, 
and also in propionate-mediated autistic rats [13]. 
However, the exact mechanism involved is not 
yet clear.  
 
It is known that BDNF is a crucial cell survival 
element associated with a variety of brain 
diseases [14]. During development, it is vital for 
neuronal survival and differentiation, maturation 
of dendritic spine, and neuritic branching and 
connections [15]. Moreover, BDNF is involved in 
vital processes such as synaptic plasticity and 

long-term potentiation, as well as in attention, 
learning and memory [16]. It has been reported 
that serum or brain BDNF levels are low in 
schizophrenia [17], major depression [18], and 
Alzheimer's disease [19]. In the model of major 
depression, based on the region of the brain 
acted on, BDNF brings about pro- and anti-
depressant, and stress-sensitive and stress-
resilient outcomes. More importantly, when 
BDNF acts on hippocampal tissues, it decreases 
negative emotional status and stress sensitivity. 
 
Plasticity-enhancing effect of BDNF is induced 
via activation of tyrosine kinase B (TrkB) receptor 
which initiates specific intracellular signaling 
pathways [20]. Tyrosine kinase B (TrkB) is 
expressed by a gene, and it exists as a full-
length (TrkB) and truncated isoform in cells. The 
Trkb.t1 isoform is an anti-plastic receptor 
because of absence of Trk domain. Indeed, it 
inhibits TrkB signal transduction by trapping 
BDNF, thereby reducing the expressions of 
downstream signal route proteins [21]. The 
BDNF/TrkB signal route is a well-established 
pathway in dendritic growth and differentiation 
processes, e.g., spine development. In addition, 
the TrkB downstream effectors, i.e., Akt, GSK-3 
and mTOR are involved in neurite and growth 
cone regulation. Patients with ASD may have de 
novo genetic changes in TrkB [22]. Moreover, 
ASD patients may have abnormal cortical, 
striatal, hippocampal, and serum levels of BDNF. 
These findings indicate the association between 
ASD and BDNF/TrkB system [23]. Previous 
studies have found that dorsal striatal 
BDNF/TrkB are essential for the major features 
of ASD. This finding is supported by the report 
that vector-induced dorsal striatal BDNF 
expression in mice alleviated autism-like 
behavior [24]. Simvastatin is considered the most 
effective neuroprotective statin [25]. Studies have 
demonstrated the efficacy and safety of 
simvastatin in the treatment of neurofibromatosis 
and autistic children [26]. Studies have shown 
that simvastatin exerts specific effects on brain 
regions, and these effects have been shown to 
be highly correlated with social disorders and 
psychopathology of autism [27]. Simvastatin 
downregulates the role of Ras pathway in NF1 
animal model, thereby reducing GABA, 
improving synaptic long-term potentiation and 
rescuing behavioral phenotypes. At the same 
time, simvastatin affects myelination, regional 
axon and astrocyte integrity in NF1. Statins 
provide neuroprotection against various cognitive 
and neurological disorders [28]. Upregulation of 
BDNF has been reported in a mouse model 
treated with simvastatin after brain injury and 
spinal cord injury [29]. This investigation has 
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demonstrated that protein expressions of BDNF 
and TrkB were markedly down-regulated in 
model and simvastatin groups, relative to control 
rats, but were markedly more up-regulated in 
simvastatin-treated rats than in model rats. 
Therefore, simvastatin regulated the protein 
expressions of BDNF and TrkB in the 
hippocampus. 
 

CONCLUSION 
 
Simvastatin improves the behavioral 
performance of autistic rats through regulation of 
protein expressions of BDNF-TrkB axis. This 
finding may be useful in the development of new 
drugs for treating autism. 
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