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Abstract 

Purpose: To investigate the potential role of sanggenon C alleviating in insulin resistance. 
Methods: HepG2 cell line was incubated with increasing concentrations of sanggenon C at 1, 5, 10, 15 
or 20 μM for 4 h. to induce cytotoxicity, and then further incubated with 100 µM palmitic acid to induce 
insulin resistance. HepG2 cells without sanggenon C and palmitic acid treatment servered as control 
group. Glucose uptake was determined by measuring 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-
benzoxadiazol-4-yl)-amino]-D-glucose) fluorescence intensity using a microplate reader. Oil Red O 
staining was used to assess intracellular lipid accumulation, while oxidative stress was evaluated by 
enzyme-linked immunosorbent assay (ELISA). 
Results: Palmitic acid significantly decreased glucose uptake and increased intracellular lipid 
accumulation in HepG2 (p < 0.01), while sanggenon C enhanced t glucose uptake and lowered lipid 
accumulation in insulin-resistant HepG2 (p < 0.01). Sanggenon C significantly attenuated palmitic acid-
induced increase in p-insulin receptor substrate 1 (p-IRS1), as well as decrease in p-AKT and p-FOXO1 
(p < 0.01). Palmitic acid also induced oxidative stress in HepG2 through the up-regulation of reactive 
oxygen species (ROS) and malondialdehyde (MDA), as well as the down-regulation of superoxide 
dismutase (SOD) and glutathione peroxidase (GSH-Px). However, sanggenon C reduced ROS and 
MDA levels (p < 0.05), and enhanced SOD and GSH-Px in insulin-resistant HepG2 (p < 0.05). However, 
sanggenon C significantly increased p-AMP-activated protein kinase (p-AMPK) levels and p-ACC 
(acetyl-CoA carboxylase) in insulin-resistant HepG2 (p < 0.01). 
Conclusion: Sanggenon C lowers oxidative stress and ameliorates lipid accumulation thereby 
alleviating palmitic acid-induced insulin-resistant HepG2 cells via activation of AMPK pathway, thus 
suggesting that it is a potential strategy for overcoming insulin resistance. 
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INTRODUCTION 
 

Type-2 diabetes mellitus is a metabolic disorder 
with numerous complications, including 

nephropathy, blindness, and retinopathy [1]. 
Resistance to insulin action is hallmarks of type 2 
diabetes mellitus [2]. Insulin resistance leads to 
high blood glucose, and ectopic lipid 
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accumulation in peripheral tissues and the liver, 
thus contributing to type 2 diabetes mellitus [2]. 
Emerging evidence has shown that amelioration 
of insulin resistance attenuated metabolic 
disorder in patients with type 2 diabetes mellitus 
[3]. Therefore, promising anti-insulin resistance 
strategies are urgently needed for the disease. 
 
Fatty acids repress insulin signaling, reduce 
glycogen synthesis and glucose uptake, and 
enhances the accumulation of lipid metabolites in 
the liver, thus contributing to insulin resistance 
[4]. Long-term exposure to saturated free fatty 
acids has been widely used in the induction of 
insulin resistance [5]. 
 
Sanggenon C is a bioactive flavonoid from root 
bark of Cortex Mori, and it possesses various 
biological capabilities, including immune-
modulatory, antithrombotic, antiviral, 
antimicrobial, anti-inflammatory, and anticancer 
capabilitiies [6]. For example, Sanggenon C 
promotes activation of mitochondrial pathway in 
order to induce colon cancer cell apoptosis [6].  
 
In diabetes, Sanggenon C can exert biological 
activities in the amelioration of diabetes through 
the regulation of α-glucosidase activity [7]. Since 
snggenon C has been found to be a potential 
inhibitor of α-glucosidase [8], it was hypothesized 
that sanggenon C might exert anti-diabetic effect, 
thereby attenuating insulin resistance. 
 
Hence, the effects of sanggenon C on insulin 
resistance and oxidative stress in insulin-
resistant HepG2 cells were investigated in this 
work in order to elucidate its probable 
mechanism of action.  
 

EXPERIMENTAL 
 
Cell culture and treatment 
 
HepG2 was cultured in Dulbecco’s modified 
Eagle’s medium (Hyclone, Victoria, Australia) 
with 10 % fetal bovine serum (Sigma-Aldrich, St 
Louis, MO, USA) and then incubated in a 37 ℃ 
incubator with 5 % CO2. To induce cytotoxicity, 
HepG2 cells were incubated with increasing 
concentrations (1, 5, 10, 15 or 20 μM of 
sanggenon C (Chengdu Mansite Biotech Co. Ltd; 
Chengdu, China) for 4 h. To induce insulin 
resistance, HepG2 cells in serum-free medium 
were pretreated with 1, 5, or 10 μM sanggenon C 
for 4 h, and then incubated with 100 µM palmitic 
acid (Sigma-Aldrich) for another 24 h [9]. HepG2 
cells without sanggenon C and palmitic acid 
treatment were served as control group. 
 

Determination of cell viability and glucose 
uptake 
 
HepG2 cells were seeded into a 96-well plate, 
and incubated with 1, 5, 10, 15 or 20 μM 
sanggenon C for 4 h; the cells were then cultured 
at 37 ℃ for another 24 h. Cell Counting Kit-8 
(CCK-8) solution (Beyotime, Beijing, China) was 
added into the cells, and absorbance at 450 nm 
was measured spectrophotometrically in a 
microplate reader. 
 
For glucose uptake studies, HepG2 cells was 
pretreated with 1, 5, or 10 μM sanggenon C for 4 
h, and then incubated with 100 µM palmitic acid 
for another 24 h. Insulin-resistant HepG2 cells 
were incubated in serum-free medium with 1 nM 
insulin and 25 mM D-glucose for 3 h. Glucose 
oxidase/peroxidase reagent (Sigma-Aldrich) was 
used to determine glucose content. Absorbance 
at 505 nm was measured. HepG2 cells were also 
treated with 50 nM 2-deoxy-2-[(7-nitro-2,1,3-
benzoxadiazol-4-yl)-amino]-D-glucose (2-NBDG, 
Sigma-Aldrich) for 30 min after treatment with 
palmitic acid and sanggenon C, and then 
fluorescence intensity was determined in a 
microplate reader (emission at 535 nm and 
excitation at 485 nm). 
 
Oil Red O Staining 
 
HepG2 cells, after incubating with sanggenon C 
for 4 h and palmitic acid for 24 h were fixed in 4 
% paraformaldehyde for 30 min, and washed 
using 60 % isopropanol. The cells were stained 
with Oil Red O solution (Sigma-Aldrich) for 1 h, 
and then examined under a microscope. Lipid 
content was determined spectrophotometrically 
at 510 nm. 
 
Determination of oxidative stress 
 
HepG2 cells were incubated with 10 μM dichloro-
dihydro-fluorescein diacetate for 30 min. 
Immunofluorescence was observed under a laser 
confocal microscope, while fluorescence was 
measured in a microplate reader (emission at 
550 nm, excitation at 488 nm). Lipid Peroxidation 
(MDA) assay kit (Sigma-Aldrich) was used to 
determine MDA level, while SOD and GSH-Px 
activities were determined using ELISA kits 
(Sigma-Aldrich). 
 
Western blot 
 
HepG2 was lysed in radioimmunoprecipitation 
assay buffer (Beyotime), and the isolated 
proteins were separated by 10 % SDS-PAGE 
and transferred onto nitrocellulose membranes. 
Membranes were blocked, and then probed with 
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specific antibodies: anti-p-IRS-1 anti-IRS-1 
(1:2000), anti-p-AKT and anti-AKT (1:2500), anti-
p21, anti-p-FOXO1 and anti-FOXO1 (1:3000), 
anti-p-ACC and anti-ACC (1:3500), anti-p-AMPK 
and anti-AMPK (1:4000), anti-GAPDH (1:4500).  
 
The membranes were then incubated with 
horseradish peroxidase-conjugated secondary 
antibody (1:4000), and visualized using 
enhanced chemiluminescence (Sigma-Aldrich). 
All the antibodies used were acquired from 
Abcam (Cambridge, MA, USA). 
 
Statistical analysis 
 
Experiments were carried out in triplicate and the 
data are expressed as mean ± SEM, and were 
analyzed by Student’s t-test or one-way analysis 
of variance using SPSS software, version 11.5. P 
< 0.05 was considered statistically significant. 

 

RESULTS 
 
Sanggenon C enhances glucose uptake in 
insulin-resistant HepG2 cells 
 
HepG2 was pretreated with sanggenon C (Figure 
1 A) before incubation with palmitic acid. 
Sanggenon C at 10 µM did not affect the cell 
viability of HepG2, while 15 and 20 µM 
sanggenon C significantly reduced cell viability (p 
< 0.01; Figure 1 A). Treatment with palmitic acid 
increased glucose content (Figure 1 B), and 
decreased 2-NBDG fluorescence intensity 
(Figure 1 C) in HepG2.  
 
However, sanggenon C reduced glucose content 
(Figure 1 B), and enhanced fluorescence 
intensity in insulin-resistant HepG2 cells (p < 
0.01; Figure 1 C), suggesting that sanggenon C 
enhanced glucose uptake by attenuating insulin 
resistance. 
 
Sanggenon C regulates proteins involved in 
insulin resistance 
 
Proteins involved in insulin resistance, including 
FOXO1, AKT and IRS-1, were not affected by 
sanggenon C in insulin-resistant HepG2 (Figure 
2 A). Palmitic acid significantly induced an 
increase in p-IRS-1 (Figure 2 A and B) (p < 
0.001), and a decrease of p-AKT (Figure 2 A and 
C) and p-FOXO1 (Figure 2 A and D) (p < 0.01) in 
HepG2. Moreover, sanggenon C reduced p-IRS-
1 (Figure 2 A and B), enhanced p-AKT (Figure 2 
A and C) and p-FOXO1 (Figure 2 A and D) in 
insulin-resistant HepG2 cells in order to alleviate 
the insulin resistance. 
 

 
 
Figure 1: Sanggenon C enhanced glucose uptake in 
insulin-resistant HepG2. (A) Sanggenon C < 10 µM did 
not affect cell viability of HepG2, while 15 or 20 µM 
sanggenon C reduced cell viability. (B) Sanggenon C 
reduced glucose content in insulin-resistant HepG2 in 
a dosage-dependent way. (C) Sanggenon C enhanced 
the fluorescence intensity in insulin-resistant HepG2 in 
a dosage-dependent way. *P < 0.05, **p < 0.01. 
Control: cells without sanggenon C and palmitic acid; 
Ins: insulin-resistant, palmitic acid-induced HepG2; 
PA+Ins+SC: palmitic acid-induced HepG2 was treated 
with 0, 1, 5, or 10 µM sanggenon C. 

 

 
 
Figure 2: Sanggenon C regulated proteins involved in 
insulin resistance. (A) Sanggenon C reduced p-IRS-1 
expression, enhanced p-AKT and p-FOXO1 in insulin-
resistant HepG2. (B) Sanggenon C reduced p-IRS-
1/IRS-1 ratio in insulin-resistant HepG2. (C) 
Sanggenon C enhanced p-AKT/AKT ratio in insulin-
resistant HepG2. (D) Sanggenon C reduced enhanced 
p-FOXO1/FOXO1 ratio in insulin-resistant HepG2. *P 
< 0.05, **p < 0.01, ***p < 0.001 
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Sanggenon C reduced lipid accumulation in 
insulin-resistant HepG2 cells 
 
Oil Red O Staining showed that lipid 
accumulation in HepG2 was significantly 
increased by palmitic acid treatment (p < 0.01; 
Figure 3 A and B). However, sanggenon C 
reduced the lipid accumulation in insulin-resistant 
HepG2 (Figure 3 A and B), demonstrating that 
sanggenon C attenuated insulin resistance via 
down-regulation of lipid accumulation. 
 

 
 
Figure 3: Sanggenon C reduced lipid accumulation in 
insulin-resistant HepG2. (A) Oil Red O Staining 
showed that sanggenon C reduced lipid accumulation 
in insulin-resistant HepG2 cells in a dose-dependent 
manner. (B) Lipid content in insulin-resistant HepG2 
cells post-sanggenon C treatment. *P < 0.05, **p < 
0.01 

 

 
 
Figure 4: Sanggenon C reduced oxidative stress in 
insulin-resistant HepG2. (A) Sanggenon C reduced the 
ROS accumulation in insulin-resistant HepG2 in a 
dosage dependent way. (B) The relative fluorescence 
intensity of ROS in insulin-resistant HepG2 post 
Sanggenon C treatment. (C) Sanggenon C attenuated 
palmitic acid-induced increase of MDA in insulin-
resistant HepG2. (D) Sanggenon C attenuated palmitic 
acid-induced decrease of SOD in insulin-resistant 
HepG2. (E) Sanggenon C attenuated palmitic acid-
induced decrease of GSH-Px in insulin-resistant 
HepG2. *P < 0.05, **p < 0.01 

 

Sanggenon C reduced oxidative stress in 
insulin-resistant HepG2 
 
Palmitic acid induced up-regulation of ROS in 
HepG2 cells (Figure 4 A and B). Sanggenon C 
reduced ROS accumulation in insulin-resistant 
HepG2 (Figure 4 A and B). Moreover, 
sanggenon C significantly attenuated palmitic 
acid-induced increase in MDA activity (Figure 4 
C), and decrease in SOD (Figure 4 D) and GSH-
Px activities (Figure 4 E) (p < 0.05) in HepG2 
cells, indicating anti-oxidant effect of sanggenon 
C against insulin resistance. 
 
Sanggenon C promotes activation of AMPK 
signaling in insulin-resistant HepG2 cells 
 
Sanggenon C did not affect proteins involved in 
AMPK signaling, including AMPK and ACC, in 
insulin-resistant HepG2 (Figure 5). However, 
sanggenon C elevated p-AMPK and p-ACC in 
insulin-resistant HepG2 (Figure 5), revealing that 
it promotes the activation of AMPK signaling in 
insulin resistance. 
 

 
 
Figure 5: Sanggenon C promotes activation of AMPK 
signaling in insulin-resistant HepG2. Sanggenon C 
elevated p-AMPK and p-ACC expression in insulin-
resistant HepG2. *P < 0.05, **p < 0.01, ***p < 0.001 

 

DISCUSSION 
 
The aqueous extract of Cortex Mori leaf reduces 
the phosphorylation of IRS1 and inflammation to 
ameliorate insulin resistance [10]. This study 
revealed that sanggenon C, a bioactive flavonoid 
of mulberry, exerted anti-diabetic effect through 
the suppression of insulin resistance and 
oxidative stress. 
 
Palmitic acid induces decrease of glucose uptake 
in HepG2, and contributes to development of 
insulin resistance [11]. This study also revealed 
that palmitic acid induced an increase of glucose 
content and a decrease of 2-NBDG fluorescence 
intensity in HepG2 cells, thus promoting insulin 
resistance. 
 
Sanggenon C protected HepG2 cells against 
palmitic acid-induced insulin resistance through 
the decrease in glucose content and the increase 
of fluorescence intensity. Insulin signaling is 
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implicated in the pathogenesis of insulin 
resistance through the IRS/AKT/FOXO1 pathway 
[12]. Palmitic acid induced the phosphorylation of 
IRS-1, inhibited the downstream insulin signaling 
through inactivation of PI3K/AKT/FOXO1 
signaling, and mediated transcription of genes 
involved in glycogen synthesis [13]. Sanggenon 
C reduced IRS-1 phosphorylation, and enhanced 
AKT and FOXO1 phosphorylation, so as to 
down-regulate lipid accumulation in insulin-
resistant HepG2, thus ameliorating insulin 
resistance. Moreover, α-glucosidase is important 
for glucose uptake, and inhibitors of α-
glucosidase are regarded as anti-diabetic drugs, 
which ameliorate diabetic complications [14]. 
Sanggenon C has been found to be a potential 
inhibitor of α-glucosidase [8], and therefore might 
inhibit the activity of α-glucosidase to attenuate 
insulin resistance. 
 
Excess glucose and lipid accumulation promotes 
the production of oxidants and oxidative stress, 
and diminishes glucose transport activity and 
insulin signaling elements during the 
development of insulin resistance [15]. 
Sanggenon C has been reported to exert anti-
oxidant effects on cerebral ischemia-reperfusion 
injury [16]. Here, Sanggenon C attenuated 
palmitic acid-induced increase of MDA and ROS, 
and a decrease of SOD and GSH-Px in HepG2 
cells, thus showing anti-oxidant effects against 
insulin resistance. 
 
AMPK signaling is a key regulator in fatty acid 
oxidation, triglycerides, adipogenesis, cholesterol 
synthesis and gluconeogenesis in the liver [17]. 
AMPK also activates autophagy, suppresses 
oxidative stress, and inflammation, thus 
participating in insulin resistance [17]. The 
blockage of AMPK aggravates insulin resistance 
[18], while activation of AMPK contributes to the 
attenuation of palmitic acid-induced insulin 
resistance and oxidative stress [19]. Sanggenon 
C enhanced the activation of AMPK and reduced 
hypoxia-induced injury in cardiomyocyte [20]. 
This study showed that sanggenon C elevated p-
AMPK and p-ACC in insulin-resistant HepG2 
cells, thus alleviating insulin resistance. 
 

CONCLUSION 
 
Sanggenon C exerts anti-oxidant effects against 
palmitic acid-induced HepG2 cells, and also 
ameliorates insulin resistance through the 
activation of AMPK signaling. Thus, sanggenon 
C is a promising agent for insulin resistance. 
However, the role of sanggenon C in insulin-
resistant animal models should be investigated in 
further research. 
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