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Abstract 

Purpose: To investigate the effect of pogostone on cardiac hypertrophy. 
Methods: An in vitro model of myocardial hypertrophy was first established by stimulating H9c2 (rat 
cardiomyocytes) with angiotensin II (Ang II), and the cells treated with or without pogostone. Atrial 
natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by western blot. 
Immunofluorescence staining was performed for α-actinin while cell surface area was quantified. 
Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probe and malondialdehyde (MDA) assay 
kit were used to determine reactive oxygen species (ROS) and MDA levels respectively. Apoptosis was 
evaluated by flow cytometry while Nrf2, p38, ERK, and JNK protein expression levels were determined 
by western-blot assay. 
Results: Compared with the control group, ANP and BNP protein expression levels, cell surface area, 
ROS, MDA, and apoptosis were all elevated in H9c2 cells after stimulation with Ang II (p < 0.001). 
Varying doses of pogostone decreased protein expressions of ANP and BNP, reduced cell surface 
area, decreased ROS and MDA levels, and inhibited apoptosis. Pogostone also up-regulated and 
inhibited the phosphorylation levels of p38 and ERK, and JNK levels in H9c2 cells. 
Conclusion: Pogostone reduces protein expression of ANP and BNP and up-regulated Nrf2 protein 
expression in H9c2 cells stimulated with angiotensin II.  
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INTRODUCTION 
 

Myocardial hypertrophy is characterized by 
increased myocardial cell size, cell death, and 
fibrosis. It mediates cardiac enlargement and is a 
compensatory response. With continued 
stimulation, myocardial hypertrophy transforms 
into pathologically hypertrophic remodeling and 

dysfunction of the heart, which ultimately results 
in heart failure and increased mortality. 
Therefore, finding effective potential drugs is 
crucial for the treatment of cardiac hypertrophy 
[1,2]. 
 
Angiotensin II (Ang II) is essential for controlling 
vascular structure and function, and by inducing 
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oxidative stress, it contributes to cardiovascular 
disease progression. Ang II binds to angiotensin 
II type 1 receptors, thereby promoting the 
generation of reactive oxygen species (ROS), 
which in turn promotes the progression of cardiac 
hypertrophy [3]. A traditional antioxidant signaling 
pathway, Nrf2, plays a role in the initiation of 
cardiac hypertrophy. By regulating antioxidant 
enzymes, Nrf2 eliminates harmful substances 
like ROS [4]. Earlier studies demonstrated that 
AngII treatment increased the levels of p-ERK, p-
p38, and p-JNK in mice [5,6]. Blocking the 
mitogen-activated protein kinases (MAPK) 
pathway is one of the strategies to improve 
cardiac hypertrophy [7]. 
 
The active ingredients in Chinese medicine are 
important for inhibiting various pathophysiological 
processes. Pogostone is the main component of 
the Chinese herbal medicine Pogostemon cablin 
(Blanco) Benth. It has been reported to have 
various biological activities such as antioxidant, 
anti-inflammatory, and immunosuppressive 
properties. Pogostone has been found to reduce 
the cellular damage caused by TNF-α, by 
promoting the activation of Nrf2, inhibiting ROS 
production, and enhancing the expression of 
antioxidant genes [8]. Pogostone also 
ameliorated endotoxic shock in mice by inhibiting 
the phosphorylation of JNK and p38 MAPK [9].  
However, the function of Pogostone in 
myocardial hypertrophy and related mechanisms 
are still unclear. This study therefore aimed to 
investigate the activity of pogostone on Ang II-
induced myocardial hypertrophy. 
 

EXPERIMENTAL 
 
Cell culture and treatment 
 
The cells (H9c2) were purchased from the 
Chinese Academy of Sciences (China, 
Shanghai) and cultured in DMEM medium with 
10 % fetal bovine serum, 1% penicillin : 
streptomycin (100 IU/mL:100 μg/mL) in a 
humidified air incubator at 37 °C with 5 % CO2. 
Cells were divided into control group, Ang II 
group, Ang II + pogostone (5 μM) group, Ang II + 
pogostone (10 μM) group, and Ang II + 
pogostone (20 μM) group. All groups except the 
control group were treated with Ang II (1 μM) in 
H9c2 cells for 24 h [10]. Cells in Ang II + 
pogostone group were treated with different 
concentrations of pogostone for 6 h before 
treatment with AngII. 
 
CCK8 assay 
 
The viability of H9c2 cells was assessed using 
the CCK8 kit. Cells were cultured in serum-free 

medium for 4 h, and treated for 24 h with 
pogostone at concentrations of 5, 10, 20, and 40 
μM. The CCK-8 solution (10 μL) was added to 
each well and incubated for 2 h. Absorbance of 
cells was determined at 450 nm. 
 
Determination of ROS 
 
Intracellular ROS production was quantified by 
using a reactive oxygen species assay (ROS) kit. 
The cells were treated with Ang II or pogostone, 
washed with PBS, and then incubated with 
DCFH-DA solution for 20 min in the dark. 
Following the completion of the assay, 
fluorescence was measured using fluorescence 
microscopy. 
 
Determination of MDA 
 
The concentration of MDA in H9c2 cells was 
assessed following manufacturer's 
recommendations. Cells were lysed, centrifuged, 
and the supernatant was collected, mixed with 
TBA solution and MDA solution, incubated at 95 
°C for 1 h, and cooled to room temperature. After 
the mixture was centrifuged, the absorbance was 
measured at 532 nm to determine MDA 
concentration. 
 
Immunofluorescence 
 
Paraformaldehyde (4 %) was used to fix H9c2 
cells for 20 min, permeablized for 20 min with 0.5 
% Triton X-100 and thereafter blocked with 1 % 
BSA for 30 min at room temperature. Cells were 
treated with α-actinin antibody (SCBT, USA, 1 : 
100)  and incubated at 4 °C. The cells were 
washed with PBS, incubated with a secondary 
antibody coupled to FITC, and fluorescent 
images were observed using fluorescence 
microscopy. ImageJ software was used to 
calculate the surface area of the cells, and from 
at least 50 randomly chosen cells, the surface 
area of H9c2 cells was calculated [11]. 
 
Measurement of apoptosis 
 
The Annexin V-FITC kit was used to measure the 
apoptosis of H9C2 cells. Cells (1.5 × 105) were 
seeded in 24-well plates, then washed and 
resuspended in binding buffer. The cells were 
treated with 10 μL PI and 5 μL annexin V-FITC 
for 15 min. Analysis of apoptosis was done by 
flow cytometry. 
 
Western-blot 
 
Total proteins of H9c2 were extracted by 
radioimmunoprecipitation assay (RIPA) lysis 
buffer which was then measured using a BCA 
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protein assay kit. Protein electrophoresis was 
performed using 10 % sodium doceyl-sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to polyvinylidene diflouride 
(PVDF) membranes. The membranes were 
washed with TBST, sealed with 5 % skim milk 
powder, and incubated with the appropriate 
primary antibody at 4 °C. The PVDF membranes 
were washed and incubated with secondary 
antibody at room temperature. The proteins were 
developed using the ECL chemiluminescence kit 
[12-15]. β-actin was used as an internal 
reference, and protein quantification was 
performed using ImageJ software. Antibody 
information was as follows: ANP (Affinity, USA, 
DF6497, 1:1000), BNP (Affinity, DF6902, 
1:1000), Bax (Affinity, AF0120, 1:2000), cleaved-
caspase3 (Affinity, AF7022, 1:1000), Nrf2 
(Affinity, AF0639, 1:1000), p38 MAPK (Affinity, 
AF6456, 1:1000), Phospho-p38 MAPK (Affinity, 
AF4001, 1:1000), Phospho-ERK (Affinity, 
AF1015, 1:1000), ERK (Affinity, AF0155, 
1:1000), Phospho-JNK (Affinity, AF3318, 
1:1000), JNK (Affinity, AF6318, 1:1000), β-actin 
(Affinity, AF7018, 1:5000), IgG (Affinity, S0001, 
1:10000). 
 
Statistical analysis 
 
Data analysis was performed using SPSS 22.0, 
and values expressed as mean ± standard error 
of the mean (SEM). Determinations were done in 
triplicate and one-way analysis of variance was 
used to compare differences between groups. P 
< 0.05 was considered statistically significant. 
 

RESULTS 
 
Pogostone ameliorated Ang II-induced 
cardiomyocyte hypertrophy 
 
The H9c2 cells were treated with different 
concentrations of pogostone (Figure 1 A) to 
prove its effect on cell viability, and results 
showed that pogostone (5, 10, and 20 μM) did 
not affect H9c2 cell viability (Figure 1 B). It was 
discovered that the protein expression of ANP 
and BNP increased in Ang II-induced H9c2 cells, 
and α-actinin staining showed an increase in the 
cardiomyocyte area, whereas treatment with 
Pogostone decreased the protein expression of 
ANP and BNP (Figure 1 C) and cardiomyocyte 
area (Figure 1 E). 
 
Pogostone ameliorated Ang II-induced 
oxidative stress 
 
The results revealed that Ang II-induced ROS 
and MDA increase in H9c2 cells, while 
pogostone (10 and 20 μM) treatment significantly 

decreased ROS and MDA levels. Cells treated 
with pogostone (5 μM) had no effect on ROS and 
MDA levels, indicating that pogostone inhibited 
Ang II-induced oxidative stress in the cells 
(Figure 2 A and B). 
 

 
 
Figure 1: Pogostone ameliorated Ang II-induced 
cardiomyocyte hypertrophy. (A) Structural formula of 
pogostone, (B) effect of different concentrations of 
pogostone on cell viability, (C) pogostone reduces Ang 
II-induced the protein expression of ANP and BNP, (D) 
quantification of protein expression of ANP and BNP, 
(E) pogostone inhibits cardiomyocyte hypertrophy. ##P 
< 0.01, ###p < 0.001 vs. control, ^p < 0.05, ^^p < 0.01 
^^^p < 0.001 vs Ang II 

 

 
 
Figure 2: Pogostone ameliorates angiotensin II-
induced oxidative stress. (A) Pogostone reduced Ang 
II-induced ROS production, (B) Pogostone reduced 
Ang II-induced MDA production. ###P < 0.001 vs 
control, ^^^p < 0.001 vs Ang II 

 
Pogostone inhibited Ang II-induced apoptosis 
 
Ang II-induced apoptosis rate and apoptosis-
related proteins Bax and cleaved-caspase 3 
protein were significantly increased in H9c2 cells. 
Apoptosis rate (Figure 3 A and B), Bax, and 
cleaved-caspase3 protein expression (Figure 3 C 
and D) of cells treated with pogostone (10 and 20 
μM) decreased. Pogostone (5 μM) also 
decreased the protein expressions of Bax, 
cleaved-caspase3 and apoptosis rate, but there 
was no significant difference in the effect on the 
apoptosis rate. 
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Figure 3: Pogostone inhibited Ang II-induced 
apoptosis. (A) Pogostone inhibited Ang II-induced 
apoptosis, (B) quantification of apoptosis rate, (C) 
pogostone inhibited the expression of Bax and 
cleaved-caspase3 in cells treated with Ang II, (D) 
quantification of western blots for Bax and cleaved-
caspase3. ###P < 0.001 vs. control, ^p < 0.05, ^^^p < 
0.001 vs Ang II 

 

 
 
Figure 4: Pogostone regulated Nrf2 and MAPKs 
pathways. Protein expression of Nrf2, p38, ERK, and 
JNK. ###P < 0.001 vs. control; ^^p < 0.01, ^^^p < 0.001 
vs Ang II 

 

Pogostone regulated Nrf2 and MAPKs 
pathways 
 
Nrf2 protein and the phosphorylation levels of 
p38, ERK and JNK were increased in H9c2 cells 
treated with Ang II. Pogostone increased Nrf2 
protein expression and decreased the 
phosphorylation levels of p38, ERK and JNK, 
indicating that pogostone activated the Nrf2 
pathway and inhibited MAPKs pathway (Figure 
4). 
 

DISCUSSION 
 
Myocardial hypertrophy, which is characterized 
by an increase in cardiac cell surface area, 
results from prolonged overloading of the heart 
[16]. The natriuretic peptides ANP and BNP, 
which are secreted by the heart are biologically 
active peptides frequently employed as 
prognostic indicators in patients with 
cardiomyocyte hypertrophy [17]. In this study, 
H9c2 cells were treated with AngII to establish an 
in vitro model of cardiac hypertrophy. Pogostone 
treatment ameliorated AngII-induced 
cardiomyocyte hypertrophy, lowered levels of 
ANP, BNP, and cell surface area; reduced ROS 
production and apoptosis. In addition, pogostone 
activated the Nrf2 pathway and inhibited the 
MAPKs pathway. This indicates that pogostone 
has potential therapeutic value for cardiac 
hypertrophy. When ROS are produced and the 
innate antioxidant system is unable to sufficiently 
combat them, oxidative stress occurs. Excessive 
ROS generation causes lipid peroxidation, and 
cellular malfunction, and may even cause cellular 
harm or death. One of the main causes of the 
growth of cardiac hypertrophy has been linked to 
ROS. Studies have demonstrated the significant 
pathogenic role that Ang-II-induced ROS plays in 
myocardial hypertrophy. As a result, the use of 
antioxidants as a medicinal strategy is becoming 
more popular [18]. In this study, pogostone 
inhibited ROS and MDA production and 
suppressed apoptosis. 
 
The intracellular redox homeostasis is crucially 
maintained by Nrf2, a crucial transcription factor 
in the cellular antioxidant system. Under typical 
physiological circumstances, Nrf2 is inactively 
bound to Keap1 in the cytoplasm. When there is 
oxidative stress, Nrf2 separates from Keap1 and 
moves to the nucleus [19]. There, it binds to the 
nuclear ARE and triggers the transcription of 
genes related to antioxidants [20]. Actually, by 
stimulating the activity of Nrf2, many herbal 
substances alleviate myocardial hypertrophy. For 
instance, Myricetin decreases myocardial 
hypertrophy by increasing Nrf2 activity [21]. Bitter 
amygdalin reduces cardiac hypertrophy caused 
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by AngII by modifying Nrf2 [22]. Previous 
research has demonstrated that pogostone 
pretreatment increased Nrf2 expression, 
protecting against acute lung injury [23]. This 
study showed that pogostone activated Nrf2 
expression thus, acting as an antioxidant. 
Reactive oxygen species regulate a number of 
molecular signaling pathways linked to cardiac 
hypertrophy. Recent research indicated that 
MAPK signaling pathway, a traditional 
mechanism involved in oxidative stress-induced 
hypertrophy, is largely activated by ROS 
generation [24]. In earlier studies, pogostone 
alleviated metabolic diseases associated with 
obesity by inhibiting MAPKs pathway [25]. This 
study also demonstrated that pogostone reduced 
the phosphorylation of p38, ERK, and JNK in 
cells caused by Ang-II. This indicated that 
pogostone inhibited MAPKs pathway by reducing 
ROS which is in tandem with previous studies 
[25]. 
 
Limitations of this study 
 
No in vivo experiments were performed. Future 
studies should include in vivo research data to 
validate these findings.  
 

CONCLUSION 
 
Pogostone inhibits oxidative stress, apoptosis, 
and ameliorates Ang-II-induced cardiac 
hypertrophy. Furthermore, pogostone promotes 
the activation of Nrf2 pathway and the inhibition 
of MAPKs pathway. This study provides a 
potential strategy for the treatment of myocardial 
hypertrophy. 
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