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Abstract 

Purpose: To determine the effect of anacardic acid on HaCaT cells in vitro and to elucidate its 
molecular action. 
Methods: HaCaT cells were incubated in varying concentrations of anacardic acid (10 to 50 µM). To 
model psoriasis, the cells were treated with tumor necrosis factor-α (TNF-α); cell viability was gauged by 
CCK-8 assay. Apoptosis was determined, and Bcl-2, Bax, p65, p-p65, p-IκBα and IκBα by Western blot. 
Levels of pro-inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). 
Results: Anacardic acid resulted in reduced HaCaT cell viability and increased cell apoptosis in a 
concentration-dependent manner (p < 0.05). It also curtailed TNF-α-mediated inflammatory responses 
and downregulated the NF-κB signaling axis.  
Conclusion: The results indicate that anacardic acid impedes HaCaT cell growth and inflammatory 
cytokine production by interfering with NF-κB signal transduction, and may influence the development of 
AA-based therapies for psoriasis. 
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INTRODUCTION 
 

Psoriasis is a prevalent chronic inflammatory 
dermatological condition [1]. The precise etiology 
remains elusive, but it is widely recognized that 
dysfunctional interactions between keratinocytes 
and immune cells contribute significantly to its 
pathogenesis [2]. Key in the disease's 
development is the release of various cytokines 
from immune cells, which in turn provoke 
keratinocyte hyperproliferation. These 
keratinocytes then produce an array of 

inflammatory cytokines, further exacerbating the 
condition [3]. Addressing the over-proliferation 
and inflammation in keratinocytes is considered a 
promising approach to managing psoriasis. 
 
Among the various signaling pathways related to 
psoriasis, NF-κB signaling is a pivotal pathway 
and is a type of TNF-α-induced inflammatory 
response. Activation of this pathway follows the 
phosphorylation and subsequent degradation of 
IκB kinase, leading to an inflammatory cascade. 
TNF-α is a critical mediator in this process, often 
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associated with psoriatic inflammation and other 
dermatological disorders [4]. There is a large 
amount of evidence supporting that TNF-α 
targeted therapy can be used to treat various 
inflammations, including psoriasis [5]. However, 
TNF inhibitors have many side effects such as 
lymphoma, infection, etc. therefore, it is 
necessary to find a safer treatment or other 
auxiliary options. 
 
Anacardic acid (AA) is an important component 
of cashew nuts, ginkgo biloba leaves and fruits. It 
has anti-inflammatory properties and anti-cancer 
activities against hand and foot edema and 
peritonitis, and also in TNF-α-induced venous 
endothelial cells [6]. In addition, AA inhibits the 
activation of NF-κB and subsequent IκB kinase, 
leading to the disappearance of kinase 
phosphorylation and the degradation of IκB [7]. In 
view of the anti-inflammatory properties of AA 
and due to the advantage of natural ingredients, 
the aim of this study was to investigate the anti-
psoriasis of AA. 
 

EXPERIMENTAL 
 
Anacardic acid 
 
Anacardic acid (AA) was sourced from 
MedChemExpress (Shanghai, China, Catalog 
no. HY-N2020), RPMI-1640 medium, obtained 
from Gibco by Thermo Fisher Scientific, served 
to solubilize and dilute AA. 
 
Cells 
 
HaCaT cells, a line of immortalized human 
keratinocytes, were procured from the National 
Infrastructure of Cell Line Resource (NICR; Cat 
no. 1101HUM-PUMC000373; Beijing, China). 
These cells were cultured in RPMI-1640 medium 
enriched with 10% fetal bovine serum (FBS) from 
Gibco, CA, USA, and 1 % penicillin-streptomycin 
solution (Catalog no. 15640055; Gibco, Thermo 
Fisher Scientific). The cultures were maintained 
at 37 °C with 5 % CO2.  
 
To assess the effect of AA, we prepared 
solutions at concentrations of 10 µM, 30 µM, and 
50 µM for HaCaT cell treatment. Cells were 
incubated at 37°C for 24 hours. A psoriasis-like 
disease state was induced using tumor necrosis 
factor-alpha (TNF-α) from Solarbio (Beijing, 
China). Following induction, cells were 
categorized into groups: control, TNF-α alone, 
and TNF-α combined with varying concentrations 
of AA (10 µM, 30 µM, and 50 µM). After 48 hours 
of treatment, cells were harvested for 
subsequent analyses. 
 

CCK-8 assay 
 
Cell viability was assessed using the CCK-8 
assay (Solarbio, Beijing, China). HaCaT cells 
were seeded into 96-well plates at 4 × 103 
cells/mL and incubated for 24 hours. 
Subsequently, cells were treated with TNF-α (10 
ng/ml) to induce a psoriasis-like state. Anacardic 
Acid (AA) at concentrations of 10 µM, 30 µM, 
and 50 µM was administered to evaluate its 
effect on cell viability. Post-treatment, CCK-8 
reagent was added, and after 1 hour of 
incubation at 37 °C, absorbance readings were 
taken at 490 nm using a microplate reader. This 
process was repeated in triplicate for statistical 
robustness. 
 
Enzyme-linked immunosorbent assay (ELISA) 
 
To quantify cytokine production, ELISA kits for 
IL-6, IL-1β, IL-8, and IL-22 in HaCaT cells. 
HaCaT cells were first treated with TNF-α for 48 
hours, followed by AA treatment for an additional 
24 hours. Post-treatment, supernatants were 
collected to measure the cytokine levels. 
(SEKF105, Solarbio, Beijing, China) 
 
Flow cytometry 
 
Flow cytometry was conducted using a BD 
Accuri™ flow cytometer (BD Biosciences, 
Franklin Lakes, NJ, USA) to determine the rate of 
apoptosis in HaCaT cells. The cells were 
exposed to increasing AA concentrations and 
stained with an Annexin V-FITC/propidium iodide 
(PI) apoptosis detection kit (Solarbio, Beijing, 
China). Following staining, flow cytometric 
analysis was performed, and apoptosis rates 
were calculated using FACS scan software (BD, 
San Jose, USA). 
 
Western blot 
 
Total cellular proteins from HaCaT cells were 
extracted using RIPA buffer (Cat no. 89901; 
Thermo Fisher, MA, USA). Centrifugation at 
16,000xg for 15 minutes at 4°C was the next 
step for lysate collection. Protein concentrations 
were determined by the bicinchoninic acid (BCA) 
protein assay (Cat no. 23225; Thermo Fisher, 
MA, USA). The proteins underwent denaturation 
at 95°C for 5 minutes and separation on a 7.5% 
SDS-PAGE, loading 30 µg per lane. They were 
then blotted onto polyvinylidene difluoride 
(PVDF) membranes (EMD Millipore, Billerica, 
MA, USA). Blocking was achieved with 5% skim 
milk in Tris-buffered saline containing 0.1% 
Tween (TBST), followed by primary antibody 
incubation overnight at room temperature. 
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The antibodies applied included Bcl-2 (1:500; Cat 
no. 3498), Bax (1:500; Cat no. 5023), p65 (1:500; 
Cat no. 8242), p-IκBα (1:500; Cat no. 3033), and 
IκBα (1:1000; Cat no. 4814) all from Cell 
Signaling Technology, Danvers, MA, USA, and 
GAPDH (1:5000; Cat no. 5174; Cell Signaling 
Technology), serving as the loading control. 
Detection involved horseradish peroxidase 
(HRP)-conjugated secondary antibodies (1:1000; 
Cat no. 7074; Cell Signaling Technology, Inc.) for 
2 hours at 37°C. The Enhanced Western Blot Kit 
(Beijing TransGen Biotech, Beijing, China) was 
used to visualize the proteins, with signal 
quantification performed using ImageJ software 
(National Institutes of Health, Bethesda, MD, 
USA). 
 
Statistical analysis 
 
Data were presented as mean ± standard 
deviation (SD) from triplicate experiments. 
Differences between groups were analyzed using 
Student's t-test or one-way ANOVA as 
appropriate. Statistical significance was set at P 
< 0.05. Data processing and graphical 
representations were performed using GraphPad 
Prism version 6.0 (GraphPad Software, Inc., La 
Jolla, CA, USA). 
 

RESULTS 
 
Anacardic acid decreased the cell viability of 
HaCaT 
 
Anacardic Acid (AA) reduced HaCaT cell viability 
in a concentration-dependent manner. HaCaT 
cells treated with 10 µM, 30 µM, and 50 µM of 
AA for 24 hours showed a significant decrease in 
viability assessed by CCK-8 assay (p < 0.05), 
and colony formation was notably affected. 

Compared to the TNF-α group, AA treatment led 
to a marked reduction in colony formation, 
demonstrating AA's inhibitory effect on HaCaT 
cell proliferation (p < 0.05; Figure 1 A, B and C ). 
 

 
 
Figure 1: Effects of AA on the growth of human 
HaCaT keratinocytes in vitro. (A) Cell viability. (B) 
Colony formation in HaCaT cells in each group. (C) 
Quantification of colony formation Data are presented 
as the mean ± standard deviation (SD) (n=3), *P < 
0.05, **p < 0.01 vs. 0 μM of AA 
 

Anacardic acid decreased TNF-α-induced 
inflammation 
 
ELISA results showed that compared with the 
Blank group, the expressions of IL-6, IL-1β, IL-8 
and IL-22 in HaCaT cell culture medium were 
significantly enhanced by TNF-α, but were 
significantly inhibited following treatment with (p 
< 0.05; Figure 2). 

 

 
 
Figure 2: Dose-dependent Inhibition of Cytokine Secretion by AA in TNF-α Stimulated HaCaT Cells. ELISA 
analysis demonstrates that TNF-α significantly elevates the secretion levels of IL-6, IL-1β, IL-8, and IL-22 in 
HaCaT cell culture medium. Treatment with AA markedly suppressed the TNF-α-induced upregulation of these 
cytokines in a concentration-dependent manner. Each bar graph quantifies the inhibitory effect of AA across 
increasing doses. Data represent mean ± SD (n=3), * p < 0.05, ** p < 0.01 vs. 0 μM of AA.# p < 0.05, ## p < 0.01 
vs. TNF-α only treated group 
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Figure 3: Effects of AA on Apoptosis and Apoptosis-Related Protein Expression in HaCaT Cells. Panel A shows 
apoptosis ratios, determined by flow cytometry, increase with AA concentration compared to the control. Panel B 
reveals changes in Bax and Bcl-2 protein levels, assessed by Western blot, with GAPDH as the loading control. 
Quantitative analysis demonstrates a dose-dependent augmentation in Bax expression and a decrease in Bcl-2 
levels upon AA treatment. Data are mean ± SD (n=3), *p < 0.05, **p < 0.01 vs. 0 μM of AA 
 

 
 
Figure 4: Impact of AA on NF-κB signaling components in HaCaT cells. Western blot analysis shows the 
differential expression of p65, phosphorylated p65 (p-p65), phosphorylated IκBα (p-IκBα), and IκBα across 
treatments. Quantification relative to the GAPDH loading control illustrates the effect of AA on TNF-α-stimulated 
cells. Bar graphs represent mean ± SD of protein expression levels, normalized to the blank group. *p < 0.01 
compared with the control group; #p < 0.01 compared with TNF-α treatment group 
 

Anacardic acid promotes TNF-α-induced 
apoptosis 
 
TNF-α treatment enhanced the apoptosis of cells 
as concentrations of AA increased. (Figure 3 A), 
but AA reduced the proliferation of cells. AA 
reduced the protein expression of Bcl-2 but 
increased the protein levels of Bax in HaCaT 
cells in a concentration-dependent manner 
(Figure 3 B). 
 
Anacardic acid inhibited NF-κB signaling 
pathway 
 
TNF-α treatment enhanced the protein 
expression of p-IκBα, IκBα, and p-p65; p-p65/p65 
ratio was normalized relative to the Blank group. 

However, AA significantly decreased the protein 
level of p-IκBα and p-p65, as well as p-p65/p65 
ratio, but increased the protein level of IκBα as 
AA concentration increased (p < 0.05; Figure 4). 
TNF-α treatment significantly stimulated NF-κB 
pathway, whereas AA significantly inhibited the 
pathway (p < 0.05). 
 

DISCUSSION 
 
Psoriasis is not uncommon. It occurs at all ages 
worldwide, and the cost of diagnosis and 
treatment of the disease is tremendous. There 
are several causative factors of psoriasis, 
including depression, arthritis, and 
cardiometabolic syndrome [8]. The underlying 
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molecular mechanisms of psoriasis have still not 
been unravelled.  
 
Keratinocytes, which play a key role in psoriasis, 
respond to cytokines produced by diseased 
immune cells, which in turn leads to signals 
crosstalk of the path [9]. Furthermore, most of 
the current treatments have side effects- 
Dithranol has a burning sensation[10], while 
methotrexate causes liver damage, etc [11]. A 
drug with higher safety and low toxicity is 
expected to become an effective way to treat 
psoriasis [12]. It is clear how keratinocytes 
respond to these cytokines, and the changes in 
signal pathways are beneficial to clinical 
treatment [13]. This study aimed to use TNF-α to 
treat HaCaT immortalized human keratinocytes 
to establish an in vitro model of psoriasis. 
 
AA is a natural product which has shown efficacy 
against some diseases [14], and has anti-
inflammatory, analgesic and antioxidant 
properties. In the present study, AA reduced 
HaCaT cell viability and induced apoptosis in a 
dose-dependent manner. It also significantly 
reduced the expression of Bcl2 and increased 
the expression of Bax, but reduced the clone 
formation rate of HaCaT. A previous in vitro work 
showed that AA inhibits the growth of pancreatic 
cancer cells and induces apoptosis in a dose-
dependent manner, indicating that AA may be an 
effective adjuvant therapy [15]. In the present 
study, AA showed its inhibitory effect on the 
proliferation of keratinocytes in a dose-
dependent manner. However, the highest 
concentration of AA used was 50 μM. as it was 
not known whether AA would be toxic to normal 
cells at higher concentrations [16]. 
 
Studies have demonstrated that although TNF-α 
is primarily recognized as a pro-inflammatory 
cytokine, it exerts complex effects on 
keratinocytes, influencing both their survival and 
apoptosis [17]. TNF-α stimulates cytokine 
production, including IL-6, IL-1β, IL-8, and IL-22, 
a finding corroborated by prior research [18-20]. 
Post-treatment with AA, there was a notable 
decrease in TNF-α-induced cell activity, following 
a dose-response pattern. Additionally, AA was 
observed to downregulate the activation of p-
p65/p65 and reduce p-IκBα levels, suggesting an 
inhibitory effect on the NF-κB signaling pathway, 
known for its dual role in both oncogenesis and 
tumor suppression [21]. The data suggest that 
AA may have potential therapeutic implications 
for psoriasis by modulating this pathway [22]. 
However, the immediate impact of AA on 
psoriasis requires further exploration. The 
findings underscore AA's potential to suppress 
TNF-α-stimulated proliferation and inflammatory 

cytokine production via the NF-κB pathway in 
vitro. 
 
Limitations of the study 
 
This study is preliminary being an in vitro 
investigation. Therefore, the role of AA in 
psoriasis requires further investigation, including 
in vivo studies and clinical trials, to determine 
whether the effect of AA on psoriasis occurs via 
NF-κB signaling pathway. In subsequent studies, 
pathway inhibitors may be used to establish 
animal psoriasis models, and determine the 
toxicity of AA to normal cells. 
 

CONCLUSION 
 
AA hampers both cell growth and the secretion of 
inflammatory mediators in HaCaT keratinocytes 
by disrupting NF-κB pathway. These results may 
influence the development of AA-based therapies 
for psoriasis. 
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