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Abstract 

Tacca is an important genus comprising of approximately 15 species of the medicinal plants 
(Taccaceae). The plants are used in traditional medicine to relieve pains of the body and stomach, as 
an antidote for food poisoning as well as for their analgesic, antipyretic and anti-inflammatory activities. 
Chemical studies have underlined more than 120 constituents have been isolated from Tacca, including 
steroidals, diarylheptanoids, phenolics, flavonoids, sesquitepenoids, triterpenoids and starch. Steroidals 
and diarylheptanoids showed potent bioactivities, such as cytotoxic, microtubule-stabilizing, NF-κB 
activation and PPAR transcriptional and insecticidal activities. The starch from T. leontopetaloides and 
T. involucrata have high amylase content and showed potential use in food and drug system. 
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INTRODUCTION 
 
Tacca comprises of approximately 15 species of 
acaulescent forest understory herbs and is 
included in the family Taccaceae. With Southeast 
Asia as their current distribution center, such 
species are primarily paleotropical in distribution 
with 6 occurring in China [1,2]. T. chantriers 
Andre is an indigenous perennial in the tropics 
which is used by local healers to relieve pains of 
the body and stomach, and as an antidote for 
food poisoning as well. Keardrit et al found it 
showed analgesic, antipyretic and anti-
inflammatory activities as claimed in traditional 
medicine [3]. In China, its rhizome has been 
used in Chinese medicines for the treatment of 
various diseases including high blood pressure, 
burns, gastric ulcers, enteritis, and hepatitis [4].  
 
T. integrifolia is mutagenic and its combined 
extracts from the medicinal plants are highly 

cytotoxic to the human cell lines, Hep2 and HFL1 
[5]. Kitjaroennirut et al found that the hypotensive 
and negative chronotropic effect of Tacca 
extracts exists in rat [6].  
 
In the early 1960s Professor Paul Scheuer 
investigated the “bitter principle” of the tubers of 
T. leontopetaloides, a starchy food source. 
Scheuer and his colleagues purified a compound 
they named taccalin in 1963 as an intensely 
bitter, light yellow powder with a probable 
tetracyclic structure [7]. The actual structure of 
taccalonolides was later found to be much larger, 
and this pioneering work laid groundwork for the 
elucidation of their structures in 1987. Then, 
much attention has been paid to Tacca species 
due to their cytotoxic, microtubule-stabilizing 
activities and as a starch source. The potency of 
taccalonolides, withanolides and their direct 
interaction with tubulin, together with their 
previous in vivo antitumor activities, reveal the 
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potential of taccalonolides as new anticancer 
agents [8-12].  
 
In this survey, we have explored the 
phytochemistry and pharmacological activities of 
the Tacca species in order to collate existing 
information on these plants as well as highlight 
its multi-activity properties as a medicinal agent 
and a potential source of industrial starch. 
 
PHYTOCHEMICAL CONSTITUENTS  
 
The chemical constituents of Tacca include 
steroidals, diarylheptanoids and their glucosides, 
terpenoids, flavonoids, and some other 
compounds [12-53]. By February 2013, their 
structures are shown below (compounds 1-122), 
and their names and the corresponding plant 
sources are collated in Table 1-8. Of all these 
compounds, one hundred steroidals are the 
predominant constituents have been isolated 
from the Genus Tacca [12-51].  
 
 
 

Steroidals 
 
Taccalonolides 
Taccalonolides are a new class of plant-derived 
natural steroids with a microtubule-stabilizing 
activity. In 1987, two new steroidal bitter 
principles, taccalonolides A (1) and B (2), were 
isolated from a Chinese medicinal plant T. 
plantaginea [13]. Then Chen and his group first 
elucidated their complete structures with modern 
chemical techniques [14, 15]. Extensive studies 
of the Genus Tacca have led to the identification 
of taccalonolides C-Z (3-26), AA-AJ (27-33) and 
H2 (34) (Table 1, Fig 1) [8, 12-27]. All of them 
were new constituents and have antitumor 
activities. Taccalonolide AJ (33), an epoxidation 
product of taccalonolide B, was generated in 
semisynthesis. Each taccalonolide molecule 
contains a C (2)-C (3) epoxide, and all except six 
compounds [taccalonolide C (3), O-Q (15-17), X 
(24) and Y (25)] have a C (23)-C (26) lactone 
ring. To the best of our knowledge, 
taccasuboside A (35) is the first pentacyclic 
sterol glycoside with 6-6-6-5-6 fused rings [28].

Table 1: Taccalonolides from the genus Tacca 
 

No. Compound name Species Ref 
1 Taccalonolide A T. chantriers,T.paxiana,T. plantaainea 8,12-22 
2 Taccalonolide B T. paxiana,T. plantaainea 12-16,22 
3 Taccalonolide C T. plantaainea 16 
4 Taccalonolide D T. plantaainea 16 
5 Taccalonolide E T. chantriers, T. paxiana, T. plantaainea 8,20-23 
6 Taccalonolide F T. plantaainea 19,23 
7 Taccalonolide G T. plantaainea 17,23 
8 Taccalonolide H T. plantaainea 12,17,23 
9 Taccalonolide I T. plantaainea 17,23 
10 Taccalonolide J T. plantaainea 17,23 
11 Taccalonolide K T. paxiana,T. plantaainea 17,22,23 
12 Taccalonolide L T. plantaainea 23,24 
13 Taccalonolide M T. plantaainea 23,24 
14 Taccalonolide N T. paxiana 22 
15 Taccalonolide O T. chantriers,T. subflabellata 25-27 
16 Taccalonolide P T. chantriers,T. subflabellata 25-27 
17 Taccalonolide Q T. subflabellata 25 
18 Taccalonolide R  T. chantriers,T. paxiana 21,22 
19 Taccalonolide S T. paxiana 22 
20 Taccalonolide T T. chantriers,T. paxiana 21,22 
21 Taccalonolide U T. paxiana 22 
22 Taccalonolide V T. paxiana 22 
23 Taccalonolide W T. plantaainea 18 
24 Taccalonolide X T. plantaainea 18 
25 Taccalonolide Y T. plantaainea 18 
26 Taccalonolide Z T. integrifolia 21 
27 Taccalonolide AA T. chantriers 21 
28 Taccalonolide AB T. chantriers 21 
29 Taccalonolide AC T. plantaainea 12 
30 Taccalonolide AD T. plantaainea 12 
31 Taccalonolide AE T. plantaainea 12 
32 Taccalonolide AF T. plantaainea 12 
33 Taccalonolide AJ T. plantaainea 12 
34 Taccalonolide H2 T. plantaainea 12 
35 Taccasuboside A T. subflabellata 28 
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Fig 1: Structures of taccalonolides from Tacca spps 
 
Withanolides and their glucosides 
 
Six new withanolides named plantagiolide A-F 
(36-41), together with four withanolide glucosides 
(42-47) (Table 2, Fig 2) were isolated from the 
whole plants of T. plantaainea and T. chantriers, 
respectively  [28-32]. The withanolides are a 
group of naturally occurring C28 steroids based 
on an ergostane skeleton in which C (26) and C 

(22), or C (26) and C (23), are oxidized in order 
to form a γ- or δ- lactone. Also, C-1 is easily 
oxidized to form a 1-oxosteroids. Interestingly, 
investigation of the extracts of T. plantaainea 
resulted in the isolation of plantagiolide I (46), an 
uncommon 3α-chloride withanolide glucoside. 
The origin of the chlorine atom has been 
attributed to the presence of NaCl in the plant [9]. 
Up to February 2013, no 3-chloro-5-hydroxyl-   
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     Table 2: Withanolides and their glucosides from the genus Tacca 
 

No. Compound name Species Ref 
36 Plantagiolide A T. plantaainea,T. subflabellata 28,29 
37 Plantagiolide B T. plantaainea 29 
38 Plantagiolide C T. plantaainea 29 
39 Plantagiolide D T. plantaainea 29 
40 Plantagiolide E T. plantaainea 29 
41 Plantagiolide F T. plantaainea 30 

42 Chantriolide A  T. chantriers,T. plantaainea, 
T. subflabellata 

27-29, 
31,32 

43 Chantriolide B T. chantriers,T. subflabellata,  
T. plantaainea 

28,31,3
2 

44 Chantriolide C T. chantriers 27 
45 Plantagiolide I  T. plantaainea 31 
46 Plantagiolide J T. plantaainea 31 

47 

(22R*,24R*,25S)-3β-[(O-β-D-Glucopyranosyl)-
(1→4)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-
glucopyranosyl-(1→6)]-β-D-glucopyranosyl)oxy] 
-22-hydroxyergost -5-en-26-oic acid δ-latone 

T. chantriers 33 

 

 

Fig 2: Structures of withanolides and their glucosides from genus Tacca 
 
Table 3: Cholestan saponins from T. chantriers 
 

No. Compound  name Ref 

48 
(24R,25S)-26-[(O-β-D-Glucopyranosyl)-(1→4)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-
glucopyranosyl-(1→6)]-β-D-glucopyranosyl)-oxy] ergost-5- en-3β-yl O-β-D-glucopyranosyl-
(1→4)-O-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranoside 

33 

49 Taccasteroside A 34 
50 Taccasteroside B 34 
51 Taccasteroside C 34 

52 
(24R,25S)-26-[(O-β-D-Glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→4)-O-β-D-
glucopyranosyl-(1→2)-O-[O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)]-β-D-
glucopyranosyl)oxy]ergost-5-en-3β-yl β-D-glucopyranoside 

35 

53 
(24R,25S)-26-[(O-β-D-Glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→2)-O-[O-β-D-
glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl)oxy]ergost-5-en-3β-yl β-D-
glucopyranoside 

35 

54 (24R,25S)-3β-Hydroxyergost-5-en-26-yl O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-
(1→2)-O-[O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside 

35 

55 (24R,25S)-26-[(O-β-D-Glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-
glucopyranosyl-(1→6)]-β-D-glucopyranosyl)oxy]ergost-5-en-3β-yl β-D-glucopyranoside 

35 

56 (24R,25S)-26-[(O-β-D-Glucopyranosyl-(1→2)-O-[O-β-D-glucopyranosyl-(1→4)-β-D-
glucopyranosyl-(1→6)]-β-D-glucopyranosyl) oxy]ergost-5-en-3β-yl β-D-glucopyranside 

35 

57 (24R,25S)-26-[(O-β-D-Glucopyranosyl-(1→3)-O-[O-β-D-glucopyranosyl -(1→4)-β-D-
glucopyranosyl-(1→6)]-β-D-glucopyranosyl)oxy]ergost-5-en-3β-yl β-D-glucopyranoside 

35 

58 (24R,25S)-26-[(O-β-D-Glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→2)-β-D-
glucopyranosyl)oxy]ergost-5-en-3β-yl β-D-glucopyranoside 

35 
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Fig 3:  Structures of cholestan saponins from T. chantriers 
 
Table 4: Spirostanol saponins from the genus Tacca 
 

No. Compound name Species Ref 
59 Leontogenin (25R)-B-nor(7)-6β-formyl-spirostane-3β,5β-diol T. leontopetaloides 36 
60 (25R)- and (25S)-spirotaccagenins T. leontopetaloides 37 
61 Diosgenin T. leontopetaloides 38 
62 Isonuatigenin T. leontopetaloides 38 
63 Isonarthogenin T. leontopetaloides 38 

64 
 (25S)-Spirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2) 
-O-[O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-
(1→3)]-β-D-glucopyranoside 

T. chantriers 39 

65 
(24S,25R)-24-Hydroxyspirost-5-en-3β-yl O-α-L-rhamnopy- 
ranosyl-(1→2)-O-[O-β-D-glucopyranosyl-(1→4)-α-L-
rhamnopyranosyl-(1→3)]-β-D-glucopyranoside 

T. chantriers 39 

66 (25S)-spirost-5-en-3β-yl O-β-D-glucopyranosyl-(1→4)- 
O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranoside T. chantriers 39 

67 
(24S,25R)-24-Hydroxyspirost-5-en-3β-yl O-α-L-rhamnopy- 
ranosyl -(1→2)-O-[α-L-rhamnopyranosyl-(1→3)]-β-D- 
glucopyranoside 

T. chantriers 39 

68 (25S)-Spirost-5-en-3β-yl-α-L-rhamnopyranosyl-(1→2)- O-[α-
L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside T. chantriers 39 

69 Chantrieroside A T. chantriers, 
T. integrifolia 27,40 

70 

Collettiside IV  
= (3β,25R)-Spirost-5-en-3-yl 6-deoxy-α-L-mannopy 
ranosyl-(1→2)-[6-deoxy-α-L-rmannopyranosyl-(1→3)]-β-D-
glucopyranoside 

T. cheancer, 
T. chantriers, 
T. integrifolia,  
T. subflabellata 

27,28, 
40-43 

71 Taccasuboside B T. subflabellata 28 
72 Taccasuboside C T. subflabellata 28 
73 Taccaoside C T. plantaainea 44 
74 Polyphyllin C T. chantriers 27 
75 Lieguonin A T. plantaainea 45 
76 Lieguonin B T. plantaainea 45 

 

     
 
Fig 4: Structures of spirostanol saponins from the Tacca spps 
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withanolide has been found in nature, which is 
consistent with the biosynthetic hypothesis. 
 
Cholestan saponins 
 
Up to February 2013, eleven C28-sterol 
oligoglucosides 48-58 (Table 3, Figure 3) were 
reported from T. chantriers [33-35]. 
 
Spirostanol Saponins, 59-76 (Table 4, Fig 4) 
 
In 1990, five spirostanols, 59-63, were isolated 
from T. leontopetaloides [36-38]. The rhizomes of 
T. chantriers have been analysed for steroidal 
saponin constituents, resulting in the isolation of 
four new spirostanol saponins (64-67), along with 

one known saponin (68) [39]. Chantrieroside A 
(69) and collettiside IV (70) were isolated from 
the same plants of T. integrifolia and T. 
chantriers [27,28,40-43]. By analyzing the 
steroidal content of fresh whole plant of T. 
subflabellata, taccasubosides B-C (71-72) were 
isolated [28]. 
 
Furostanol saponins 
 
Taccaoside A (77), B (78) and D (79), together 
with twelve furostanol saponins (80-91) (Table 5, 
Figure 5), were obtained from T. plantaginea, T. 
chantriers, T. subflabellata, T. Integrifolia [28,31,33, 
40-41,44,46-48]. 

 
Table 5: Furostanol saponins from the genus Tacca 
 

No. Compound name Species Ref 
77 Taccaoside A T. plantaainea 46 
78 Taccaoside B T. plantaainea 46 
79 Taccaoside D T. plantaainea 44 

80 
26-O-β-D-Glucopyranosyl-(25S)-3β,22§,26-triol-furost-5-ene 3-O-
α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-
glucopyranoside 

T. chantriers, 
T. subflabellata, 
T. plantaainea 

28,31, 
44,47 

81 
(25S)-26-[(β-D-Glucopyranosyl)oxy]furosta-5,20(22)-dien-3β-yl 
O-α-L-rhamnopyranosyl-(1→2)-O-[α-L-rhamnopyranosyl 
-(1→3)]-β-D-glucopyranoside 

T. chantriers 47 

82 
(25S)-26-[(β-D-Glucopyranosyl)oxy]-22α-methoxyfurost-5-en-3β-
yl O-α-L-rhamnopyranosyl-(1→2)-O-[O-β-D-glucopyranosyl -
(1→4)-α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside 

T. chantriers 48 

83 

(25S)-26-[(β-D-Glucopyranosyl)oxy]-22α-methoxyfurost-5-en-3β-
yl O-α-L-rhamnopyranosyl-(1→2)-O-[O-β-D-glucopyranosyl-
(1→4)-α-L-rhamnopyranosyl-(1→3)]-6-O-acetyl-β-D-
glucopyranoside 

T. chantriers 48 

84 

(25S)-26-[(O-β-D-Glucopyranosyl-(1→6)-β-D-
glucopyranosyl)oxy]-22α-methoxyfurost-5-en-3β-yl O-α-L-
rhamnopyranosyl -(1→2)-O- 
[O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)]-β-D-
glucopyranoside 

T. chantriers 48 

85 
(25S)-26-[(β-D-Glucopyranosyl)oxy]furosta-5,20(22)-dien-3β-yl 
O-α-L-rhamnopyranosyl-(1→2)-O-[O-β-D-glucopyranos 
yl -(1→4)-α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside 

T. chantriers 48 

86 

(25S)-26-[(β-D-Glucopyranosyl)oxy]-22α-methoxyfurosta-
5,20(22)-dien-3β-yl O-α-L-rhamnopyranosyl-(1→2)-O-[O-β-D- 
glucopyranosyl -(1→4)-α-L-rhamnopyranosyl-(1→3)]-6-O-acetyl 
-β-D-glucopyranoside 

T. chantriers 48 

87 
(3β,22R,25R)-26-(β-D-Glucopyranosyloxy)-22-hydroxyfurost-5-
en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L- 
mannopyranosyl-(1→3)]-β-D-glucopyranoside 

T. integrifolia 40,41 

88 
(3β,22R,25R)-26-(β-D-Glucopyranosyloxy)-22-methoxyfurost-5-
en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L- 
mannopyranosyl-(1→3)]-β-D-glucopyranoside 

T. integrifolia 40,41 

89 
(3β,22R,25R)-26-(β-D-Glucopyranosyloxy)-22-hydroxyfurost-5- 
en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[β-D-glucopyranosyl 
-(1→4)-6-deoxy-α-L-mannopyranosyl-(1→3)]-β-D-
glucopyranoside 

T. integrifolia 40 

90 
(3S,22Z,25§)-26-[(β-D-Glucopyranosyl)oxy]-20-hydroxyfurosta-
5,22-dien-3β-yl O-β-D-glucopyranosyl-(1→4)-α-L-
rhamnopyranosyl 
-(1→3)] -[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside 

T. chantriers 33 

91 
(20S,22Z,25§)-26-[(β-D-Glucopyranosyl)oxy]-20-hydroxyfurosta-
5,22-dien-3β-yl O-α-L-rhamnopyranosyl (1→2)-O-[α-L- 
rhamnopyranosyl-(1→3)]-β-D-glucopyranoside 

T. chantriers 33 
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Fig 5: Structures of furostanol saponins from Tacca spps 
 
Pregnane glycosides 
 
Five pregnane glycosides, 92-96 (Table 6, Figure 
6), were isolated from T. chantriers and T. 
subflabellata [28,31,40,47,48]. Compounds 92, 
93, 95 are different from 85, 86 in the lack of the 
signals assignable to the tetrasubstituted olefinic 
group forming the bond between C (20) and C 
(22) and in the presence of a ketone carbonyl 
carbon signal at δ 205.5 and an ester carbonyl 
carbon signal at δ 173.3. Other steroidals, 
namely taccagenin (97), nuatigenin (98), 

stigmasterol (99) and daucosterin (100) (Table 6, 
Fig 6), were isolated from T. leontopetaloides 
and T. chantriers [37-38,43,45]. 
 
Diarylheptanoids and their glycosides 
 
One known compound (101), two new 
diarylheptanoids (102, 103) and ten new 
diarylheptanoid glucosides (104-113) (Table 7, 
Fig 7) were isolated from the rhizomes of T. 
chantriers and T. plantaginea [49-51]. 
 

 
Table 6: Pregnane glycosides and other steroidals from the genus Tacca 
 

No. Compound name Species Ref 

92 

16β-[[(4S)-5-(β-D-Glucopyranosyloxy)-4-methyl-1-
oxopentyl]oxy]-3β-[(O-α-L-rhamnopyranosyl-(1→2)-O-[α-L-
rhamnopyranosyl-(1→3)]-β-D-glucopyranosyl)oxy]pregn-5-en-
20-one 

T. chantriers, 
T. plantaginea  31,47 

93 

16β-[[(4S)-5-(β-D-Glucopyranosyloxy)-4-methyl-1-
oxopentyl]oxy]-3β-[(O-α-L-rhamnopyranosyl-(1→2)-O-[O-β-D-
glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)]-β-D-
glucopyranosyl)oxy]pregn-5-en-20-one 

T. chantriers 48 

94 
3β-[(O-α-L-Rhamnopyranosyl-(1→2)-O-[O-β-D-glucopyranosyl-
(1→4)-α-L-rhamnopyranosyl-(1→3)]-β-D-
glucopyranosyl)oxy]pregna-5,16-dien-20-one 

T. chantriers 48 

95 

(3β,16β)-3-{[6-Deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α- 
L-mannopyranosyl-(1→3)]-β-D-glucopyranosyl]oxy}-20-
oxopregn-5-en-16-yl(4R)-5-(β-D-glucopyranosyloxy)-4-
methylpentanoate 

T. integrifolia 40 

96 Taccasuboside D T. subflabellata 28 
97 Taccagenin  T. leontopetaloides 37 
98 Nuatigenin T. leontopetaloides 38 
99 Stigmasterol T. chantriers 43 

100 Daucosterin T. chantriers, 
T. plantaginea 43,45 
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Fig 6: Structures of pregnane glycosides and other steroidal compounds from Tacca spp 
 
Table 7: Diarylheptanoids and their glycosides from Tacca spp 
 
No. Compound name Species Ref 
101 1,7-Bis(4-bis(4-hydroxy-phenyl)-3,5-heptanediol T. chantriers 49 

102 (3R,5R)-3,5-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-
heptane T. chantriers 50 

103 (3R,5R)-3,5-Dihydroxy-1,7-bis-(3,4-dihydroxyphenyl)heptane T. chantriers 50 

104 (3R,5R)-3,5-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-
heptane 3-O-β-D-glucopyranoside T. chantriers 50,51 

105 (3R,5R)-3,5-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-
hydroxyphenyl)heptane3-O-β-D-glucopyranoside T. chantriers 50 

106 (3R,5R)-3,5-Dihydroxy-1,7-bis(3,4-dihydroxyphenyl) heptane 
3-O-β-D-glucopyranoside T. chantriers 50,51 

107 (3R,5R)-3,5-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-
dihydroxyphenyl)heptane 3-O-β-D-glucopyranoside T. chantriers 50 

108 (3R,5R)-3,5-Dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-heptane 
3-O-β-D-glucopyranoside T. chantriers 50 

109 (3R,5R)-3,5-Dihydroxy-1,7-bis(4-hydroxyphenyl)heptane 3-O-β-
Dglucopyranoside T. chantriers 50,51 

110 (3R,5R)-3,5-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl) 
heptane 5-O-β-D-glucopyranoside T. chantriers 50 

111 Plantagineosides A T. plantaainea 51 
112 Plantagineosides B T. plantaainea 51 
113 Plantagineosides C T. plantaainea 51 

 
 

 

Fig 7: Structures of diarylheptanoids and their glucosides from Tacca spps 
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       Table 8: Other compounds from the genus Tacca 
 

No. Compound name Species Ref 

114 4-[6-O-(4-Hydroxy-3,5-dimethoxybenzoyl)-β-D- 
glucopyranosyloxy]-3-methoxybenzoic acid T. chantriers 33 

115 Evelynin T. chantriers 52 
116 Roseoside T. plantaainea 31 
117 Gusanlungionoside D T. plantaainea 31 
118 Quercetin-3-α-arabinoside T. aspera 53 
119 Medicagenic acid T. aspera 53 
120 Betulinic acid T. aspera 53 
121 α-Monopalmitin T. chantriers 49 
122 n-Triacontanol T. aspera 53 

 

 

Fig 8: Structures of other compounds from Tacca spps 
 
Others compounds 
  
A new phenolic glycoside, 114, and a new 
benzoquinone-type retro-dihydrochalcone, 115, 
were isolated from T. chantriers, respectively 
[32,52]. From the MeOH extract of the whole 
plants of T. plantaginea, two megastigmane 
glycosides are named roseoside (116) and 
gusanlungionoside D (117) [31]. Quercetin-3-α-
arabinoside (118), two triterpenes, namely 
castanogenin (119) and betulinic acid (120), 
together with α-monopalmitin (121) and n-
triacontanol (122) (Table 8, Fig 8), were isolated 
from T. aspera and T. chantriers [48, 53]. 
 
Starch 
 
Starch is a natural biodegradable biopolymer 
which is in high demand recently for use in many 
industrial products. Search for more new sources 
of starch from plants, however, has also greatly 
increased. Tacca starch from T. leontopetaloides 
is found to have higher amylose content than 
maize starch but a lower content than potato 
starch. Its features in the formation of compacts 
(tablets) were comparable to those of maize 
starch with tacca starch being more resistant to 
deformation [54]. Maneka et al found lower 
gelatinization temperature and the narrow 
gelatinization range demonstrated an energy 

efficient cooking process. It has an implication for 
the food industry. The weak associative forces 
stabilizing tacca starch granules could be 
explored for its potential use as a disintegrant in 
the pharmaceutical sector [55]. The physico-
chemical properties of tacca starch showed 
potential usefulness of the starch in aqueous and 
hydrophobic food and drug systems [56]. 
 
The plant of T. involucrata is a wild plant that 
contains starch which is eaten when the flour is 
being cooked with almost 0% fat, usually by the 
villagers or rural dwellers in the Northern Nigeria 
as their food. The morphology of the granules 
was the same for both starches but they differed 
in granule size distribution: white tacca (6.13-
18.12 μm), yellow tacca (4.19-11.98 μm), which 
were isolated from white and yellow T. 
involucrata tubers [57]. The gelatin at 52-65oC 
has an amylase content of 36% [58]. It exhibits 
high water binding capacity, solubility and limited 
swelling power behavior which are dependent on 
temperature [59]. The properties are good data 
sources useful in processing, storage and 
handling for Tacca tubers [60]. Adebiyi et al 
reported that physicochemical properties of 
starch citrate derivative from T. involucrata might 
be a better disintegrant than native tacca starch 
in tablet formulations [61]. It shows better 
swelling and water absorption properties over the 
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native starch, indicating that T. involucrata is a 
potential source of industrial starch and a 
promising pharmaceutical excipient [62].  
 
In summary, the type of starch from a non-
conventional source T. leontopetaloides and T. 
involucrata could reduce the cost of producing 
starch and eliminate or minimize competition on 
stable food crops like cassava or potatoes or as 
a kind of pharmaceutical source. 
 
DISCUSSION 
 
Cytotoxic activity 
 
In the years of 1988 and 1995, Chen et al found 
that taccalonolide A (1) displayed a cytotoxic 
activity against P-388 leukemia in cell culture 
[15,49], but taccalonolides G- K (7- 11) showed 
only a weak cytotoxicity against P 388 leukemia 
cells in vitro [17]. 
 
Compounds 64 and 68 showed considerable 
cytotoxicity with respective IC50 values of 1.8 and 
2.1 μM, whereas etoposide used as positive 
control gives an IC50 of 0.37 μM against HL-60 
leukemia cells. Compounds 65 and 67, the 
corresponding C (24) hydroxy derivatives of 64, 
66, and 68, which are structurally related to 64 
with a terminal rhamnosyl group linked to C (2) of 
the inner glucosyl residue absent from 64, did not 
show any cell growth inhibitory activity at the 
sample concentration of 10 μg/ml, suggesting 
that the structures of both the aglycone and 
sugar moieties contribute to the cytotoxicity [39]. 
The cytotoxic activity of compound 70 was 
evaluated in HeLa cells and shows the highest 
cytotoxicity value with an IC50 of 1.2 ± 0.4 μM. 
Compounds 69 and 87- 89 exhibited similar 
cytotoxic properties between 1.5 ± 0.3 to 4.0 ± 
0.6 μM [40]. 
 
Some compounds were evaluated for their 
cytotoxic activities against five human cancer cell 
lines (HL-60, SMMC-7721, A549, MCF-7, and 
SW480), in which cisplatin (DDP) was used as 
the reference substance and exhibited IC50 
values for the cell lines of 1.50 to 25.57 μM, 
respectively. Taccasubosides A-D (35, 96, 71 
and 72, respectively) were inactive (IC50 > 40 
μM). Compound 70 exhibited a moderate activity 
against the above cell lines with IC50 values from 
15.73 to 25.08 μM, while compound 80 with IC50 
values of 4.63, 4.34, 3.00, 11.13, and 2.68 μM, 
respectively [28]. 
 
Two diarylheptanoids (102, 103) and four 
glycosides (104, 106, 107, 110), each of which 
has three or four phenolic hydroxyl groups, 

showed a moderate cytotoxic activity against HL-
60 cells with IC50 values ranging from 1.8 to 6.4 
μg/mL. Those possessing two phenolic hydroxyl 
groups (105, 108, 109) didn’t exhibit an apparent 
cytotoxic activity even at a sample concentration 
of 10 μg/mL. It is noteworthy that compounds 
whose phenolic hydroxyl groups are all masked 
with methyl groups are also cytotoxic. These 
observations suggest that the number of phenolic 
hydroxyl groups contributes to the resultant 
cytotoxicity. As for the activity against HSC-2 
cells, diarylheptanoids with methyl groups show 
considerable cytotoxicity. They show much 
higher cytotoxic activities against HSC-2 cells 
than against the normal HGF [50]. Evelynin (115) 
exhibited cytotoxicity against MDA-MB-435 
melanoma, MDA-MB-231 breast, PC-3 prostate, 
and HeLa cervical carcinoma cells, with IC50 
values being 4.1, 3.9, 4.7, and 6.3 μM, 
respectively [52]. 
 
Microtubule-stabilizing activity 
 
Microtubules remain an important target for 
anticancer drug discovery. Paclitaxel, a plant-
derived microtubule stabilizer, is one of the most 
successful anticancer drugs currently used. 
Taccalonolides (oxygenated steroids) are a new 
class of structurally and mechanistically distinct 
microtubule-stabilizing agents isolated from 
plants of the genus Tacca. Taccalonolides stand 
alone among new microtubule stabilizers in that 
they appear to have a unique mechanism of 
action which does not involve direct binding to 
tubulin [63]. Risinger et al summarized the 
biological activities in vitro and in vivo and their 
potential advantages over clinically used 
microtubule stabilizers. They also discussed the 
challenges in formulation and supply that are to 
be solved before taccalonolides could become 
candidates for clinical development [10]. Herein 
we will review the microtubule stabilizers of 
taccalonolides for the latest three years. 
 
Peng et al found that taccalonolides R (18), T 
(20), Z(26), AA (27), and AB (28) from T. 
chantriers and T. integrifolia, as well as 
taccalonolides A (1), B (2), E (5) and N (14), 
displayed microtubule stabilizing activities, but 
profound differences in antiproliferative potencies 
were also  noted (IC50 32 nM to 13 μM) [21]. 
These studies demonstrate that diverse 
taccalonolides possess microtubule stabilizing 
properties and that significant structure-activity 
relationships exist. In efforts to define their 
structure-activity relationships, six taccalonolides 
AC- H2 (29 - 34), demonstrated cellular 
microtubule-stabilizing activities and 
antiproliferative actions against cancer cells, with 
taccalonolide AJ (33) (an epoxidation product of 
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taccalonolide B generated by semisynthesis) 
exhibiting the highest potency with an IC50 value 
of 4.2 nM. The range of potencies of these 
compounds, from 4.2 nM to > 50 μM, for the first 
time provided an opportunity to identify specific 
structural moieties crucial for potent biological 
activities as well as those that impede optimal 
cellular effects. In mechanistic assays, 
taccalonolides AF (32) and AJ (33) could interact 
directly with tubulin/microtubules and were able 
to enhance tubulin polymerization to the same 
extent as paclitaxel but exhibited a distinct kinetic 
profile, suggesting a distinct binding mode or the 
possibility of a new binding site [12]. 
 
In an effort to find new microtubule stabilizing 
agents, Risinger et al identified taccalonolide AF 
(32) with an epoxide group bridging C (22)-C 
(23), the only difference between AF and the 
major plant component taccalonolide A, and 
found it shows microtubule stabilizing activity 
with IC50 value of 23 nM in Hela cells. A wide 
range of antiproliferative potencies was obtained 
with the natural taccalonolides with IC50 values 
ranging from 23 nM to > 50µM in HeLa cells. A 
one-step epoxidation reaction was used to 
synthesize AF (32) from A (1) and AJ (33) from B 
(2) and AJ is highly potent with an IC50 value of 
4.2 nM. They found the C (22)-C (23) epoxy 
group facilitates optimal potency for microtubule 
stabilizers [64,65]. 
 
Clonogenic assays showed that taccalonolide A 
and radiation act in an additive manner to cause 
cell death. These studies suggested that diverse 
antimitotic agents, including the taccalonolides, 
may have utility in chemoradiotherapy [66]. 
Risinger et al found the close linkage between 
the microtubule bundling and antiproliferative 
effects of taccalonolide A were of interest given 
the recent hypothesis that the effects of 
microtubule targeting agents on interphase 
microtubules might play a prominent role in their 
clinical anticancer efficacy [67]. The latter finding 
that the anticancer effects of microtubule 
targeting agents may be due in large part to their 
interphase effects. The kinetic profile of tubulin 
polymerization observed in the presence of 
potent taccalonolides was unlike that observed 
with other stabilizers, further suggesting that the 
taccalonolides interact with tubulin in a manner 
that was markedly distinct from other classes of 
microtubule targeting agents. The unique 
biochemical and cell biological properties of 
these potent taccalonolides, together with the 
excellent in vivo antitumor activity observed for 
this class of agents in drug resistant tumor 

models, reveal the potential of taccalonolides as 
a new class of anticancer drugs [68]. 
 
NF-κB activation and PPAR transcriptional 
activity 
 
Compounds 42, 104, 106, 109 and 113 
significantly inhibited TNF α-induced NF-κB 
transcriptional activity in HepG2 cells with IC50 
values ranging from 0.9 to 9.4 μM. Chantriolide 
A-B (42, 43), plantagiolide I-J (45, 46), 80, 92, 
104, 106, 109, 111-113, and 116, 117 
significantly activated the transcriptional activity 
of PPARs with EC50 values ranging from 0.30 to 
49.7 μM. In addition, the transactivational effect 
of these compounds on three individual PPAR 
subtypes, including PPARα, β(δ), and γ were 
evaluated. All of them significantly activated the 
transcriptional activity of PPARβ (δ), with EC50 
values in a ranging from 4.1 to 30.1 µM 
[31,51].These results provide a scientific support 
for the use of T. plantaginea and its components 
for the prevention and treatment of inflammatory 
and metabolic diseases. 
 
Insecticidal effect 
 
In 1988, Chen et al found that compound 1 has a 
killing effect on Plasmodium berghai [15]. 
Taccalonolides O-Q (15-17) had no any 
biological activity, however, neither in the 
nematicidal screening against Meloidogyne 
incognita nor in the insecticidal screening against 
Phaedon cochleariae, Tetranychus urticae, or 
Plutella maculipennis [25]. 
 
CONCLUSION 
 
Phytochemical studies on the plants of this 
genus have led to the isolation of ca. 122 
compounds including steroidals, diaryl-
heptanoids, and terpenoids. Some chemical 
constituents displayed cytotoxic activity, 
microtubule-stabilizing activity and so on. 
However, there still arise questions concerning 
the structure-activity relationships and elucidation 
of the action mechanism. Tacca are important 
plants not only in the medicinal sense but also as 
a food source or as an energy material. Thus 
much more attention should be paid to Tacca 
species for further phytochemical, 
pharmacological and cultural studies.  
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