Indexed by Science Citation Index (SciSearch), International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate

ISSN: 1596-5996 (print); 1596-9827 (electronic)-


Home | Back Issues | Current Issue | Review manuscript | Submit manuscript

 
 

This Article

 

Abstract

 

Full-Text (PDF)

 

Table of contents

 

Comments

 

Letters

 

Comments to Editor

 

e-mail Alert

 

Sign Up

 

Original Research Article


 

Storage Stabilisation of Albumin-Loaded Chitosan Nanoparticles by Lyoprotectants 

 

Haliza Katas*, Zahid Hussain and Suraiya A Rahman

Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.

 

*For correspondence: E-mail:: haliz12@hotmail.com; Tel: +6(0)392897971

 

Received:  10 May 2012                                              Revised accepted: 24 January 2013

 

Tropical Journal of Pharmaceutical Research, April 2013; 12(2): 135-142

http://dx.doi.org/10.4314/tjpr.v12i2.1   

Abstract

 

Purpose: To investigate the effect of lyoprotectants on the physical and storage stability of lyophilised bovine serum albumin-loaded chitosan/dextran sulphate (BSA-loaded CS/DS) nanoparticles.

Methods: BSA-loaded CS/DS nanoparticles were prepared by ionic-gelation technique. The nanoparticles were harvested by ultra-centrifugation and then various lyoprotectants at different concentrations were added to the nanoparticles prior to lyophilisation at 40 oC for 24 h. Particle size and distribution as well as zeta potential of the nanoparticles were measured by dynamic light scattering method. Entrapment efficiency and BSA retained in the nanoparticles matrices were determined spectrophotometrically at λmax of 595 nm. 

Results: The results indicate that 0.5 %w/v trehalose was the most effective lyoprotectant and it essentially maintained the particle size of lyophilised BSA-loaded CS/DS nanoparticles which changed slightly from 188 ± 11 nm to 174 ± 14 nm during lyophilisation. Mannitol was also as effective as trehalose at 0.1 and 1.0 % w/v in stabilising the nanoparticles.  The particle size of lyophilized nanoparticles increased moderately from 188 ± 11 nm to 234 ± 12 nm and 287 ± 18 nm at 0.1 and 1.0 % w/v, respectively. In contrast, the other lyoprotectants (inulin and histidine) did not show stabilizing effects. Moreover, trehalose also  reduced the degree of particle aggregation from 329 ± 16 to 836 ± 21 nm upon storage for 24 h as compared to CS/DS nanoparticles without trehalose; from 438 ± 14 to 1298 ± 18 (p < 0.05). The rate of BSA leakage from the nanoparticles containing trehalose was reduced from 92 to 42 % over a 11-day storage period compared with 99 to 0 % for CS/DS nanoparticles without trehalose.

Conclusion: Trehalose (0.5 % w/v) is a promising lyoprotectant for storage stabilisation of BSA-loaded CS/DS nanoparticles.

 

Keywords: Lyoprotectant, Chitosan, Nanoparticles, Trehalose, Bovine serum albumin, Ultracentri-fugation.

Copyright@2002-2010. Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City. All rights reserved.

Powered by Poracom E-mail: jmanager@poracom.net