Indexed by Science Citation Index (SciSearch), International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate

ISSN: 1596-5996 (print); 1596-9827 (electronic)-


Home | Back Issues | Current Issue | Review manuscript | Submit manuscript

 
 

This Article

 

Abstract

 

Full-text

 

Table of contents

 

Comments

 

Letters

 

Comments to Editor

 

e-mail Alert

 

Sign Up

 

 

Research Article


 

Stability-Indicating Reverse Phase HPLC Method for the Determination of Cefazolin

 

N Lalitha*, Pai PN Sanjay, MG Vyshak and Uvesh Kadri

Al-Ameen College of Pharmacy, Near Lalbagh Main Gate, Bangalore-560027, India

*Corresponding author:  E-mail: lallubalu@rediffmail.com  Tel: +91-9448685343, 8026760811; Fax: +91-8022225834

Received: 17 June 2009                                                                    Revised accepted: 30 October 2009

Tropical Journal of Pharmaceutical Research, February 2010; 9(1): 45-50

 

Abstract

 

Purpose: The aim of the present study was to establish the inherent stability of cefazolin through stress studies under a variety of ICH recommended test conditions and, also to develop a stability indicating assay.

Methods: A stability-indicating HPLC assay method was developed and validated for cefazolin using an isocratic RP-HPLC method which employed an SS Wakosil II- C18 column (250 mm × 4.6 mm i.d., 5 µm) with a mobile phase consisting of phosphate buffer (pH 6.8) and methanol (5:2 v/v), and UV detection at 254 nm at a flow rate of 1 ml/min. The stress testing of cefazolin was carried out under acidic, alkaline, neutral, oxidation and thermal conditions.

Results: The drug peak was well resolved from the peaks of the degradation products. The proposed method was validated for sensitivity, selectivity, linearity, accuracy, precision and solution stability. From the degradation studies it was found that the drug was thermally stable but unstable in acidic, alkaline, neutral and oxidative conditions. The response of drug was linear in the concentration Range of 1 - 50 μg/ml with the number of theoretical plates, and tailing factor being 1341 and 1, respectively. Limit of detection and limit of quantification were 0.1 and 0.2, μg/ml respectively while recovery ranged from 95 - 100%. Method precision and precision of the system were within the limits of acceptance criteria.

Conclusion: This study presents a simple and validated stability-indicating HPLC method for the estimation of cefazolin in the presence of degradation products. The developed method is specific, accurate, precise and robust. All the degradation products formed during forced degradation studies were well separated from the analyte peak.

 

Keywords: Cefazolin; Stability-indicating assay; Reversed-phase HPLC

Copyright@2002-2013. Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City. All rights reserved.

Powered by Poracom E-mail: jmanager@poracom.net